論文の概要: Relational Graph Convolutional Networks: A Closer Look
- arxiv url: http://arxiv.org/abs/2107.10015v1
- Date: Wed, 21 Jul 2021 11:25:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-22 18:52:59.176146
- Title: Relational Graph Convolutional Networks: A Closer Look
- Title(参考訳): リレーショナルグラフの畳み込み型ネットワーク
- Authors: Thiviyan Thanapalasingam, Lucas van Berkel, Peter Bloem, Paul Groth
- Abstract要約: グラフ畳み込みネットワーク(RGCN)の再生について述べる。
再現を用いて、モデルの背後にある直感を説明します。
結果は,実装の正しさを実証的に検証した。
- 参考スコア(独自算出の注目度): 1.8428580623654864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we describe a reproduction of the Relational Graph
Convolutional Network (RGCN). Using our reproduction, we explain the intuition
behind the model. Our reproduction results empirically validate the correctness
of our implementations using benchmark Knowledge Graph datasets on node
classification and link prediction tasks. Our explanation provides a friendly
understanding of the different components of the RGCN for both users and
researchers extending the RGCN approach. Furthermore, we introduce two new
configurations of the RGCN that are more parameter efficient. The code and
datasets are available at https://github.com/thiviyanT/torch-rgcn.
- Abstract(参考訳): 本稿では,rgcn(relational graph convolutional network)の再現について述べる。
再現を用いて、モデルの背後にある直感を説明する。
その結果,ノード分類とリンク予測タスクにおけるベンチマークナレッジグラフデータセットを用いて,実装の正確性を実証的に検証した。
我々の説明は、RGCNアプローチを拡張したユーザと研究者の両方に対して、RGCNの異なるコンポーネントについて友好的な理解を提供する。
さらに,よりパラメータ効率の良いrscnの2つの新しい構成を導入する。
コードとデータセットはhttps://github.com/thiviyant/torch-rgcnで入手できる。
関連論文リスト
- Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
グラフ構造化データの表現学習では、多くの人気のあるグラフニューラルネットワーク(GNN)が長距離依存をキャプチャできない。
本稿では,自己注意型グラフ畳み込みネットワーク(GCN-SA)と呼ばれる新しいグラフ学習フレームワークを提案する。
提案手法はノードレベルの表現学習において例外的な一般化能力を示す。
論文 参考訳(メタデータ) (2024-03-06T05:00:31Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - R-GCN: The R Could Stand for Random [2.221251076371994]
Random Convolutional Network (RR-GCN) は知識グラフ上のノードへの埋め込みを構築する。
RR-GCNはノード分類とリンク予測設定の両方において完全に訓練されたR-GCNと競合できることを示す。
論文 参考訳(メタデータ) (2022-03-04T16:55:25Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
グラフニューラルネットワーク(GNN)は、ノード近傍の情報を集約し変換することで、グラフ構造とノードの特徴を探索する。
グラフ構造を利用してノード類似性を効果的かつ効率的に保存できるSimP-GCNを提案する。
本研究は,SimP-GCNが3つの分類グラフと4つの非補助グラフを含む7つのベンチマークデータセットに対して有効であることを示す。
論文 参考訳(メタデータ) (2020-11-19T04:18:01Z) - Lightweight, Dynamic Graph Convolutional Networks for AMR-to-Text
Generation [56.73834525802723]
軽量な動的グラフ畳み込みネットワーク (LDGCN) を提案する。
LDGCNは入力グラフから高次情報を合成することにより、よりリッチな非局所的な相互作用をキャプチャする。
我々は,グループグラフの畳み込みと重み付き畳み込みに基づく2つの新しいパラメータ保存戦略を開発し,メモリ使用量とモデル複雑性を低減する。
論文 参考訳(メタデータ) (2020-10-09T06:03:46Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - RGCF: Refined Graph Convolution Collaborative Filtering with concise and
expressive embedding [42.46797662323393]
我々はRefined Graph Convolution Collaborative Filtering(RGCF)というGCNベースの新しい協調フィルタリングモデルを開発した。
RGCFはグラフ内の暗黙の高次連結性を捉えることができ、結果として得られるベクトル表現はより表現力が高い。
我々は3つの公開百万規模のデータセットに対して広範な実験を行い、我々のRGCFが最先端のモデルを大幅に上回っていることを実証した。
論文 参考訳(メタデータ) (2020-07-07T12:26:10Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。