One Masked Model is All You Need for Sensor Fault Detection, Isolation and Accommodation
- URL: http://arxiv.org/abs/2403.16153v1
- Date: Sun, 24 Mar 2024 13:44:57 GMT
- Title: One Masked Model is All You Need for Sensor Fault Detection, Isolation and Accommodation
- Authors: Yiwei Fu, Weizhong Yan,
- Abstract summary: We propose a novel framework for sensor fault detection using masked models and self-supervised learning.
We validate our proposed technique on both a public dataset and a real-world dataset from offshore GE wind turbines.
Our proposed technique has the potential to significantly improve the accuracy and reliability of sensor measurements in real-time.
- Score: 1.0359008237358598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and reliable sensor measurements are critical for ensuring the safety and longevity of complex engineering systems such as wind turbines. In this paper, we propose a novel framework for sensor fault detection, isolation, and accommodation (FDIA) using masked models and self-supervised learning. Our proposed approach is a general time series modeling approach that can be applied to any neural network (NN) model capable of sequence modeling, and captures the complex spatio-temporal relationships among different sensors. During training, the proposed masked approach creates a random mask, which acts like a fault, for one or more sensors, making the training and inference task unified: finding the faulty sensors and correcting them. We validate our proposed technique on both a public dataset and a real-world dataset from GE offshore wind turbines, and demonstrate its effectiveness in detecting, diagnosing and correcting sensor faults. The masked model not only simplifies the overall FDIA pipeline, but also outperforms existing approaches. Our proposed technique has the potential to significantly improve the accuracy and reliability of sensor measurements in complex engineering systems in real-time, and could be applied to other types of sensors and engineering systems in the future. We believe that our proposed framework can contribute to the development of more efficient and effective FDIA techniques for a wide range of applications.
Related papers
- Multi-Sensor Fusion for UAV Classification Based on Feature Maps of Image and Radar Data [4.392337343771302]
We propose a system that fuses already processed multi-sensor data into a new Deep Neural Network to increase its classification accuracy towards UAV detection.
The model fuses high-level features extracted from individual object detection and classification models associated with thermal, optronic, and radar data.
arXiv Detail & Related papers (2024-10-21T15:12:37Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
This paper proposes a radial threat estimation method for energy pipelines based on distributed optical fiber sensing technology.
We introduce a continuous multi-view and multi-domain feature fusion methodology to extract comprehensive signal features.
We incorporate the concept of transfer learning through a pre-trained model, enhancing both recognition accuracy and training efficiency.
arXiv Detail & Related papers (2023-12-18T12:37:35Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Predictive Maintenance Model Based on Anomaly Detection in Induction
Motors: A Machine Learning Approach Using Real-Time IoT Data [0.0]
In this work, we demonstrate a novel anomaly detection system on induction motors used in pumps, compressors, fans, and other industrial machines.
We use a combination of pre-processing techniques and machine learning (ML) models with a low computational cost.
arXiv Detail & Related papers (2023-10-15T18:43:45Z) - Unsupervised machine-learning shock-capturing technique for high-order
solvers [0.0]
We present a novel unsupervised machine learning shock capturing algorithm based on Gaussian Mixture Models (GMMs)
The proposed GMM sensor demonstrates remarkable accuracy in detecting shocks and is robust across diverse test cases without the need for parameter tuning.
Our study reveals the potential of unsupervised machine learning methods, exemplified by the GMM sensor, to improve the robustness and efficiency of advanced CFD codes.
arXiv Detail & Related papers (2023-07-28T10:33:12Z) - SECOE: Alleviating Sensors Failure in Machine Learning-Coupled IoT
Systems [0.0]
This paper proposes SECOE, a proactive approach for alleviating potentially simultaneous sensor failures.
SECOE includes a novel technique to minimize the number of models in the ensemble by harnessing the correlations among sensors.
Experiments reveal that SECOE effectively preserves prediction accuracy in the presence of sensor failures.
arXiv Detail & Related papers (2022-10-05T10:58:39Z) - Bandit Quickest Changepoint Detection [55.855465482260165]
Continuous monitoring of every sensor can be expensive due to resource constraints.
We derive an information-theoretic lower bound on the detection delay for a general class of finitely parameterized probability distributions.
We propose a computationally efficient online sensing scheme, which seamlessly balances the need for exploration of different sensing options with exploitation of querying informative actions.
arXiv Detail & Related papers (2021-07-22T07:25:35Z) - Anomaly Detection through Transfer Learning in Agriculture and
Manufacturing IoT Systems [4.193524211159057]
In this paper, we analyze data from sensors deployed in an agricultural farm with data from seven different kinds of sensors, and from an advanced manufacturing testbed with vibration sensors.
We show how in these two application domains, predictive failure classification can be achieved, thus paving the way for predictive maintenance.
arXiv Detail & Related papers (2021-02-11T02:37:27Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z) - Learning Selective Sensor Fusion for States Estimation [47.76590539558037]
We propose SelectFusion, an end-to-end selective sensor fusion module.
During prediction, the network is able to assess the reliability of the latent features from different sensor modalities.
We extensively evaluate all fusion strategies in both public datasets and on progressively degraded datasets.
arXiv Detail & Related papers (2019-12-30T20:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.