Active Learning in Incomplete Label Multiple Instance Multiple Label
Learning
- URL: http://arxiv.org/abs/2107.10804v1
- Date: Thu, 22 Jul 2021 17:01:28 GMT
- Title: Active Learning in Incomplete Label Multiple Instance Multiple Label
Learning
- Authors: Tam Nguyen and Raviv Raich
- Abstract summary: We propose a novel bag-class pair based approach for active learning in the MIML setting.
Our approach is based on a discriminative graphical model with efficient and exact inference.
- Score: 17.5720245903743
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In multiple instance multiple label learning, each sample, a bag, consists of
multiple instances. To alleviate labeling complexity, each sample is associated
with a set of bag-level labels leaving instances within the bag unlabeled. This
setting is more convenient and natural for representing complicated objects,
which have multiple semantic meanings. Compared to single instance labeling,
this approach allows for labeling larger datasets at an equivalent labeling
cost. However, for sufficiently large datasets, labeling all bags may become
prohibitively costly. Active learning uses an iterative labeling and retraining
approach aiming to provide reasonable classification performance using a small
number of labeled samples. To our knowledge, only a few works in the area of
active learning in the MIML setting are available. These approaches can provide
practical solutions to reduce labeling cost but their efficacy remains unclear.
In this paper, we propose a novel bag-class pair based approach for active
learning in the MIML setting. Due to the partial availability of bag-level
labels, we focus on the incomplete-label MIML setting for the proposed active
learning approach. Our approach is based on a discriminative graphical model
with efficient and exact inference. For the query process, we adapt active
learning criteria to the novel bag-class pair selection strategy. Additionally,
we introduce an online stochastic gradient descent algorithm to provide an
efficient model update after each query. Numerical experiments on benchmark
datasets illustrate the robustness of the proposed approach.
Related papers
- Exploiting Conjugate Label Information for Multi-Instance Partial-Label Learning [61.00359941983515]
Multi-instance partial-label learning (MIPL) addresses scenarios where each training sample is represented as a multi-instance bag associated with a candidate label set containing one true label and several false positives.
ELIMIPL exploits the conjugate label information to improve the disambiguation performance.
arXiv Detail & Related papers (2024-08-26T15:49:31Z) - Determined Multi-Label Learning via Similarity-Based Prompt [12.428779617221366]
In multi-label classification, each training instance is associated with multiple class labels simultaneously.
To alleviate this problem, a novel labeling setting termed textitDetermined Multi-Label Learning (DMLL) is proposed.
arXiv Detail & Related papers (2024-03-25T07:08:01Z) - Disambiguated Attention Embedding for Multi-Instance Partial-Label
Learning [68.56193228008466]
In many real-world tasks, the concerned objects can be represented as a multi-instance bag associated with a candidate label set.
Existing MIPL approach follows the instance-space paradigm by assigning augmented candidate label sets of bags to each instance and aggregating bag-level labels from instance-level labels.
We propose an intuitive algorithm named DEMIPL, i.e., Disambiguated attention Embedding for Multi-Instance Partial-Label learning.
arXiv Detail & Related papers (2023-05-26T13:25:17Z) - ActiveLab: Active Learning with Re-Labeling by Multiple Annotators [19.84626033109009]
ActiveLab is a method to decide what to label next in batch active learning.
It automatically estimates when it is more informative to re-label examples vs. labeling entirely new ones.
It reliably trains more accurate classifiers with far fewer annotations than a wide variety of popular active learning methods.
arXiv Detail & Related papers (2023-01-27T17:00:11Z) - Multi-Instance Partial-Label Learning: Towards Exploiting Dual Inexact
Supervision [53.530957567507365]
In some real-world tasks, each training sample is associated with a candidate label set that contains one ground-truth label and some false positive labels.
In this paper, we formalize such problems as multi-instance partial-label learning (MIPL)
Existing multi-instance learning algorithms and partial-label learning algorithms are suboptimal for solving MIPL problems.
arXiv Detail & Related papers (2022-12-18T03:28:51Z) - An Effective Approach for Multi-label Classification with Missing Labels [8.470008570115146]
We propose a pseudo-label based approach to reduce the cost of annotation without bringing additional complexity to the classification networks.
By designing a novel loss function, we are able to relax the requirement that each instance must contain at least one positive label.
We show that our method can handle the imbalance between positive labels and negative labels, while still outperforming existing missing-label learning approaches.
arXiv Detail & Related papers (2022-10-24T23:13:57Z) - One Positive Label is Sufficient: Single-Positive Multi-Label Learning
with Label Enhancement [71.9401831465908]
We investigate single-positive multi-label learning (SPMLL) where each example is annotated with only one relevant label.
A novel method named proposed, i.e., Single-positive MultI-label learning with Label Enhancement, is proposed.
Experiments on benchmark datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-06-01T14:26:30Z) - Trustable Co-label Learning from Multiple Noisy Annotators [68.59187658490804]
Supervised deep learning depends on massive accurately annotated examples.
A typical alternative is learning from multiple noisy annotators.
This paper proposes a data-efficient approach, called emphTrustable Co-label Learning (TCL)
arXiv Detail & Related papers (2022-03-08T16:57:00Z) - Fast learning from label proportions with small bags [0.0]
In learning from label proportions (LLP), the instances are grouped into bags, and the task is to learn an instance classifier given relative class proportions in training bags.
In this work, we focus on the case of small bags, which allows designing more efficient algorithms by explicitly considering all consistent label combinations.
arXiv Detail & Related papers (2021-10-07T13:11:18Z) - Interaction Matching for Long-Tail Multi-Label Classification [57.262792333593644]
We present an elegant and effective approach for addressing limitations in existing multi-label classification models.
By performing soft n-gram interaction matching, we match labels with natural language descriptions.
arXiv Detail & Related papers (2020-05-18T15:27:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.