Exploiting Conjugate Label Information for Multi-Instance Partial-Label Learning
- URL: http://arxiv.org/abs/2408.14369v1
- Date: Mon, 26 Aug 2024 15:49:31 GMT
- Title: Exploiting Conjugate Label Information for Multi-Instance Partial-Label Learning
- Authors: Wei Tang, Weijia Zhang, Min-Ling Zhang,
- Abstract summary: Multi-instance partial-label learning (MIPL) addresses scenarios where each training sample is represented as a multi-instance bag associated with a candidate label set containing one true label and several false positives.
ELIMIPL exploits the conjugate label information to improve the disambiguation performance.
- Score: 61.00359941983515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-instance partial-label learning (MIPL) addresses scenarios where each training sample is represented as a multi-instance bag associated with a candidate label set containing one true label and several false positives. Existing MIPL algorithms have primarily focused on mapping multi-instance bags to candidate label sets for disambiguation, disregarding the intrinsic properties of the label space and the supervised information provided by non-candidate label sets. In this paper, we propose an algorithm named ELIMIPL, i.e., Exploiting conjugate Label Information for Multi-Instance Partial-Label learning, which exploits the conjugate label information to improve the disambiguation performance. To achieve this, we extract the label information embedded in both candidate and non-candidate label sets, incorporating the intrinsic properties of the label space. Experimental results obtained from benchmark and real-world datasets demonstrate the superiority of the proposed ELIMIPL over existing MIPL algorithms and other well-established partial-label learning algorithms.
Related papers
- Mixed Blessing: Class-Wise Embedding guided Instance-Dependent Partial Label Learning [53.64180787439527]
In partial label learning (PLL), every sample is associated with a candidate label set comprising the ground-truth label and several noisy labels.
For the first time, we create class-wise embeddings for each sample, which allow us to explore the relationship of instance-dependent noisy labels.
To reduce the high label ambiguity, we introduce the concept of class prototypes containing global feature information.
arXiv Detail & Related papers (2024-12-06T13:25:39Z) - Disambiguated Attention Embedding for Multi-Instance Partial-Label
Learning [68.56193228008466]
In many real-world tasks, the concerned objects can be represented as a multi-instance bag associated with a candidate label set.
Existing MIPL approach follows the instance-space paradigm by assigning augmented candidate label sets of bags to each instance and aggregating bag-level labels from instance-level labels.
We propose an intuitive algorithm named DEMIPL, i.e., Disambiguated attention Embedding for Multi-Instance Partial-Label learning.
arXiv Detail & Related papers (2023-05-26T13:25:17Z) - Complementary Classifier Induced Partial Label Learning [54.61668156386079]
In partial label learning (PLL), each training sample is associated with a set of candidate labels, among which only one is valid.
In disambiguation, the existing works usually do not fully investigate the effectiveness of the non-candidate label set.
In this paper, we use the non-candidate labels to induce a complementary classifier, which naturally forms an adversarial relationship against the traditional classifier.
arXiv Detail & Related papers (2023-05-17T02:13:23Z) - Multi-Instance Partial-Label Learning: Towards Exploiting Dual Inexact
Supervision [53.530957567507365]
In some real-world tasks, each training sample is associated with a candidate label set that contains one ground-truth label and some false positive labels.
In this paper, we formalize such problems as multi-instance partial-label learning (MIPL)
Existing multi-instance learning algorithms and partial-label learning algorithms are suboptimal for solving MIPL problems.
arXiv Detail & Related papers (2022-12-18T03:28:51Z) - Acknowledging the Unknown for Multi-label Learning with Single Positive
Labels [65.5889334964149]
Traditionally, all unannotated labels are assumed as negative labels in single positive multi-label learning (SPML)
We propose entropy-maximization (EM) loss to maximize the entropy of predicted probabilities for all unannotated labels.
Considering the positive-negative label imbalance of unannotated labels, we propose asymmetric pseudo-labeling (APL) with asymmetric-tolerance strategies and a self-paced procedure to provide more precise supervision.
arXiv Detail & Related papers (2022-03-30T11:43:59Z) - Integrating Unsupervised Clustering and Label-specific Oversampling to
Tackle Imbalanced Multi-label Data [13.888344214818733]
Clustering is performed to find out the key distinct and locally connected regions of a multi-label dataset.
Only the minority points within a cluster are used to generate the synthetic minority points that are used for oversampling.
Experiments using 12 multi-label datasets and several multi-label algorithms show that the proposed method performed very well.
arXiv Detail & Related papers (2021-09-25T19:00:00Z) - Active Learning in Incomplete Label Multiple Instance Multiple Label
Learning [17.5720245903743]
We propose a novel bag-class pair based approach for active learning in the MIML setting.
Our approach is based on a discriminative graphical model with efficient and exact inference.
arXiv Detail & Related papers (2021-07-22T17:01:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.