Pre-Clustering Point Clouds of Crop Fields Using Scalable Methods
- URL: http://arxiv.org/abs/2107.10950v1
- Date: Thu, 22 Jul 2021 22:47:22 GMT
- Title: Pre-Clustering Point Clouds of Crop Fields Using Scalable Methods
- Authors: Henry J. Nelson and Nikolaos Papanikolopoulos
- Abstract summary: We show a similarity between the current state-of-the-art for this problem and a commonly used density-based clustering algorithm, Quickshift.
We propose a number of novel, application specific algorithms with the goal of producing a general and scalable plant segmentation algorithm.
When incorporated into field-scale phenotyping systems, the proposed algorithms should work as a drop in replacement that can greatly improve the accuracy of results.
- Score: 14.06711982797654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to apply the recent successes of automated plant phenotyping and
machine learning on a large scale, efficient and general algorithms must be
designed to intelligently split crop fields into small, yet actionable,
portions that can then be processed by more complex algorithms. In this paper
we notice a similarity between the current state-of-the-art for this problem
and a commonly used density-based clustering algorithm, Quickshift. Exploiting
this similarity we propose a number of novel, application specific algorithms
with the goal of producing a general and scalable plant segmentation algorithm.
The novel algorithms proposed in this work are shown to produce quantitatively
better results than the current state-of-the-art while being less sensitive to
input parameters and maintaining the same algorithmic time complexity. When
incorporated into field-scale phenotyping systems, the proposed algorithms
should work as a drop in replacement that can greatly improve the accuracy of
results while ensuring that performance and scalability remain undiminished.
Related papers
- Approximating Metric Magnitude of Point Sets [4.522729058300309]
Metric magnitude is a measure of the "size" of point clouds with many desirable geometric properties.
It has been adapted to various mathematical contexts and recent work suggests that it can enhance machine learning and optimization algorithms.
In this paper, we study the magnitude problem, and show efficient ways of approximating it. We show that it can be cast as a convex optimization problem, but not as a submodular optimization.
The paper describes two new algorithms - an iterative approximation algorithm that converges fast and is accurate, and a subset selection method that makes the computation even faster.
arXiv Detail & Related papers (2024-09-06T17:15:28Z) - Sample Complexity of Algorithm Selection Using Neural Networks and Its Applications to Branch-and-Cut [1.4624458429745086]
We build upon recent work in this line of research by considering the setup where, instead of selecting a single algorithm that has the best performance, we allow the possibility of selecting an algorithm based on the instance to be solved.
In particular, given a representative sample of instances, we learn a neural network that maps an instance of the problem to the most appropriate algorithm for that instance.
In other words, the neural network will take as input a mixed-integer optimization instance and output a decision that will result in a small branch-and-cut tree for that instance.
arXiv Detail & Related papers (2024-02-04T03:03:27Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Neural Algorithmic Reasoning Without Intermediate Supervision [21.852775399735005]
We focus on learning neural algorithmic reasoning only from the input-output pairs without appealing to the intermediate supervision.
We build a self-supervised objective that can regularise intermediate computations of the model without access to the algorithm trajectory.
We demonstrate that our approach is competitive to its trajectory-supervised counterpart on tasks from the CLRSic Algorithmic Reasoning Benchmark.
arXiv Detail & Related papers (2023-06-23T09:57:44Z) - Efficient distributed representations with linear-time attention scores normalization [3.8673630752805437]
We propose a linear-time approximation of the attention score normalization constants for embedding vectors with bounded norms.
The accuracy of our estimation formula surpasses competing kernel methods by even orders of magnitude.
The proposed algorithm is highly interpretable and easily adapted to an arbitrary embedding problem.
arXiv Detail & Related papers (2023-03-30T15:48:26Z) - Bioinspired Cortex-based Fast Codebook Generation [0.09449650062296822]
We introduce a feature extraction method inspired by sensory cortical networks in the brain.
Dubbed as bioinspired cortex, the algorithm provides convergence to features from streaming signals with superior computational efficiency.
We show herein the superior performance of the cortex model in clustering and vector quantization.
arXiv Detail & Related papers (2022-01-28T18:37:43Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Community detection using fast low-cardinality semidefinite programming [94.4878715085334]
We propose a new low-cardinality algorithm that generalizes the local update to maximize a semidefinite relaxation derived from Leiden-k-cut.
This proposed algorithm is scalable, outperforms state-of-the-art algorithms, and outperforms in real-world time with little additional cost.
arXiv Detail & Related papers (2020-12-04T15:46:30Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
Bipartite b-matching is fundamental in algorithm design, and has been widely applied into economic markets, labor markets, etc.
Existing exact and approximate algorithms usually fail in such settings due to either requiring intolerable running time or too much computation resource.
We propose textttNeuSearcher which leverages the knowledge learned from previously instances to solve new problem instances.
arXiv Detail & Related papers (2020-05-09T02:48:23Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
We study the problem of efficient exploration in order to learn an accurate model of an environment, modeled as a Markov decision process (MDP)
We show that our Markov-based algorithm outperforms both our original algorithm and the maximum entropy algorithm in the small sample regime.
arXiv Detail & Related papers (2020-03-06T16:17:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.