Task Scheduling Optimization with Direct Constraints from a Tensor Network Perspective
- URL: http://arxiv.org/abs/2311.10433v3
- Date: Mon, 04 Aug 2025 19:20:31 GMT
- Title: Task Scheduling Optimization with Direct Constraints from a Tensor Network Perspective
- Authors: Alejandro Mata Ali, Iñigo Perez Delgado, Beatriz García Markaida, Aitor Moreno Fdez. de Leceta,
- Abstract summary: This work presents a novel method for task optimization in industrial plants using quantum-inspired tensor network technology.<n>Three algorithms for computation are presented: the main algorithm, the iterative algorithm which adds only the minimal amount of necessary constraints, and the genetic algorithm which combines the iterative algorithm with basic genetic algorithms.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a novel method for task optimization in industrial plants using quantum-inspired tensor network technology. This method obtains the best possible combination of tasks on a set of machines with directed constraints. With this method, an exact and explicit solution of the problem is provided. This algorithm constructs a tensor network representation of the tensor which provides the solution of the problem. This method is improved in order to reduce the computational complexity of the solution computation, using problem preprocessing, new techniques of condensation of logical constraints, optimization of the value determination technique with previously calculated results, reuse of intermediate computations, and iterative relations for constraints. Three algorithms for computation are presented: the main algorithm, the iterative algorithm which adds only the minimal amount of necessary constraints, and the genetic algorithm which combines the iterative algorithm with basic genetic algorithms. Finally, a simple version of both algorithms was implemented, and their performance was tested, all publicly available.
Related papers
- Knapsack and Shortest Path Problems Generalizations From A Quantum-Inspired Tensor Network Perspective [40.5694560588179]
We present two quantum-inspired algorithms to solve the knapsack and the shortest path problems.<n>The methods provide an exact equation which returns the optimal solution of the problems.
arXiv Detail & Related papers (2025-06-13T12:27:34Z) - Preference-Based Gradient Estimation for ML-Guided Approximate Combinatorial Optimization [15.102119312523696]
Combinatorial optimization (CO) problems arise across a broad spectrum of domains, including medicine, logistics, and manufacturing.<n>We propose a learning-based approach that enhances existing non-learned approximation algorithms for CO.<n>Our method is trained end-to-end in a self-supervised fashion, using a novel gradient estimation scheme that treats the approximation algorithm as a black box.
arXiv Detail & Related papers (2025-02-26T18:23:07Z) - Evolving Hard Maximum Cut Instances for Quantum Approximate Optimization Algorithms [11.930061411630442]
Variational quantum algorithms, such as the Recursive Quantum Approximate Optimization Algorithm (RQAOA), have become increasingly popular.
In this study, we utilize an evolutionary algorithm equipped with a unique fitness function.
This approach targets hard maximum cut instances within the latent space of a Graph Autoencoder.
arXiv Detail & Related papers (2025-01-30T14:32:06Z) - Local Linear Convergence of Infeasible Optimization with Orthogonal Constraints [12.414718831844041]
An infeasible retraction-based approach was proposed as an efficient alternative.<n>This paper establishes a novel landing algorithm for smooth non-free component analysis using only a neuralian PL condition.<n> Numerical experiments demonstrate that the landing algorithm performs on par with the state-the-art retraction-based methods with substantially reduced computational overhead.
arXiv Detail & Related papers (2024-12-07T16:02:27Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Randomized Polar Codes for Anytime Distributed Machine Learning [66.46612460837147]
We present a novel distributed computing framework that is robust to slow compute nodes, and is capable of both approximate and exact computation of linear operations.
We propose a sequential decoding algorithm designed to handle real valued data while maintaining low computational complexity for recovery.
We demonstrate the potential applications of this framework in various contexts, such as large-scale matrix multiplication and black-box optimization.
arXiv Detail & Related papers (2023-09-01T18:02:04Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Stochastic Ratios Tracking Algorithm for Large Scale Machine Learning
Problems [0.7614628596146599]
We propose a novel algorithm for adaptive step length selection in the classical SGD framework.
Under reasonable conditions, the algorithm produces step lengths in line with well-established theoretical requirements.
We show that the algorithm can generate step lengths comparable to the best step length obtained from manual tuning.
arXiv Detail & Related papers (2023-05-17T06:22:11Z) - Accelerated First-Order Optimization under Nonlinear Constraints [61.98523595657983]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.<n>An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - A Sequential Deep Learning Algorithm for Sampled Mixed-integer
Optimisation Problems [0.3867363075280544]
We introduce and analyse two efficient algorithms for mixed-integer optimisation problems.
We show that both algorithms exhibit finite-time convergence towards the optimal solution.
We establish quantitatively the efficacy of these algorithms by means of three numerical tests.
arXiv Detail & Related papers (2023-01-25T17:10:52Z) - Quantum-Inspired Approximations to Constraint Satisfaction Problems [0.0]
This paper presents new algorithms for satisfying configurations using methods from Boolean Fourier analysis.
The approach is broadly inspired by the quantum amplitude amplification algorithm.
We demonstrate that satisfying solutions may be retrieved in a process analogous to quantum measurement made efficient by sparsity in the Fourier domain.
arXiv Detail & Related papers (2022-12-08T00:40:56Z) - AskewSGD : An Annealed interval-constrained Optimisation method to train
Quantized Neural Networks [12.229154524476405]
We develop a new algorithm, Annealed Skewed SGD - AskewSGD - for training deep neural networks (DNNs) with quantized weights.
Unlike algorithms with active sets and feasible directions, AskewSGD avoids projections or optimization under the entire feasible set.
Experimental results show that the AskewSGD algorithm performs better than or on par with state of the art methods in classical benchmarks.
arXiv Detail & Related papers (2022-11-07T18:13:44Z) - Constructing Optimal Contraction Trees for Tensor Network Quantum
Circuit Simulation [1.2704529528199062]
One of the key problems in quantum circuit simulation is the construction of a contraction tree.
We introduce a novel time algorithm for constructing an optimal contraction tree.
We show that our method achieves superior results on a majority of tested quantum circuits.
arXiv Detail & Related papers (2022-09-07T02:50:30Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Optimization of Robot Trajectory Planning with Nature-Inspired and
Hybrid Quantum Algorithms [0.0]
We solve robot trajectory planning problems at industry-relevant scales.
Our end-to-end solution integrates highly versatile random-key algorithms with model stacking and ensemble techniques.
We show how the latter can be integrated into our larger pipeline, providing a quantum-ready hybrid solution to the problem.
arXiv Detail & Related papers (2022-06-08T02:38:32Z) - A quantum-inspired tensor network method for constrained combinatorial
optimization problems [5.904219009974901]
We propose a quantum-inspired tensor-network-based algorithm for general locally constrained optimization problems.
Our algorithm constructs a Hamiltonian for the problem of interest, effectively mapping it to a quantum problem.
Our results show the effectiveness of this construction and potential applications.
arXiv Detail & Related papers (2022-03-29T05:44:07Z) - Simulation Paths for Quantum Circuit Simulation with Decision Diagrams [72.03286471602073]
We study the importance of the path that is chosen when simulating quantum circuits using decision diagrams.
We propose an open-source framework that allows to investigate dedicated simulation paths.
arXiv Detail & Related papers (2022-03-01T19:00:11Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Lagrangian Decomposition for Neural Network Verification [148.0448557991349]
A fundamental component of neural network verification is the computation of bounds on the values their outputs can take.
We propose a novel approach based on Lagrangian Decomposition.
We show that we obtain bounds comparable with off-the-shelf solvers in a fraction of their running time.
arXiv Detail & Related papers (2020-02-24T17:55:10Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
This letter investigates a channel assignment problem in uplink wireless communication systems.
Our goal is to maximize the sum rate of all users subject to integer channel assignment constraints.
Due to high computational complexity, machine learning approaches are employed to obtain computational efficient solutions.
arXiv Detail & Related papers (2020-01-12T15:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.