論文の概要: Ego-GNNs: Exploiting Ego Structures in Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2107.10957v1
- Date: Thu, 22 Jul 2021 23:42:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-26 22:27:11.199751
- Title: Ego-GNNs: Exploiting Ego Structures in Graph Neural Networks
- Title(参考訳): Ego-GNN: グラフニューラルネットワークにおけるエゴ構造の爆発
- Authors: Dylan Sandfelder, Priyesh Vijayan, William L. Hamilton
- Abstract要約: Ego-GNNは、実世界のグラフにおける推移性の優位性を考えると、閉三角形を認識できることを示す。
特に、Ego-GNNは、実世界のグラフにおける推移性の優位性を考えると、閉三角形を認識することができることを示す。
- 参考スコア(独自算出の注目度): 12.97622530614215
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Graph neural networks (GNNs) have achieved remarkable success as a framework
for deep learning on graph-structured data. However, GNNs are fundamentally
limited by their tree-structured inductive bias: the WL-subtree kernel
formulation bounds the representational capacity of GNNs, and polynomial-time
GNNs are provably incapable of recognizing triangles in a graph. In this work,
we propose to augment the GNN message-passing operations with information
defined on ego graphs (i.e., the induced subgraph surrounding each node). We
term these approaches Ego-GNNs and show that Ego-GNNs are provably more
powerful than standard message-passing GNNs. In particular, we show that
Ego-GNNs are capable of recognizing closed triangles, which is essential given
the prominence of transitivity in real-world graphs. We also motivate our
approach from the perspective of graph signal processing as a form of multiplex
graph convolution. Experimental results on node classification using synthetic
and real data highlight the achievable performance gains using this approach.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データのディープラーニングフレームワークとして、目覚ましい成功を収めている。
しかしながら、GNNは木構造的帰納バイアスによって基本的に制限されている: WL-サブツリーのカーネルの定式化はGNNの表現能力の境界であり、多項式時間GNNはグラフ内の三角形を認識できない。
本稿では,egoグラフ上に定義された情報(すなわち各ノードを囲む誘導サブグラフ)を用いて,GNNメッセージパッシング操作を強化することを提案する。
我々はこれらのアプローチをEgo-GNNと呼び、Ego-GNNは標準のメッセージパスGNNよりも明らかに強力であることを示す。
特に、Ego-GNNは、実世界のグラフにおける推移性の優位性を考えると、閉三角形を認識することができることを示す。
また,多重グラフ畳み込みの一形態として,グラフ信号処理の観点からのアプローチを動機付けている。
合成データと実データを用いたノード分類の実験結果は,この手法による実現可能な性能向上を強調する。
関連論文リスト
- A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
グラフニューラルネットワーク(GNN)は、グラフ畳み込みの連続的な応用により、隣接ノードからの情報を結合する。
ノードレベルとグラフレベルの両方のタスクにおけるGNNの一般化ギャップについて検討する。
トレーニンググラフのノード数によって一般化ギャップが減少することを示す。
論文 参考訳(メタデータ) (2024-06-07T19:25:02Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Geodesic Graph Neural Network for Efficient Graph Representation
Learning [34.047527874184134]
我々はGeodesic GNN(GDGNN)と呼ばれる効率的なGNNフレームワークを提案する。
ラベル付けなしでノード間の条件付き関係をモデルに注入する。
ジオデシック表現を前提としたGDGNNは、通常のGNNよりもはるかにリッチな構造情報を持つノード、リンク、グラフ表現を生成することができる。
論文 参考訳(メタデータ) (2022-10-06T02:02:35Z) - Distribution Preserving Graph Representation Learning [11.340722297341788]
グラフニューラルネットワーク(GNN)は、ノードとグラフ全体の分散表現のためのグラフをモデル化するのに有効である。
本稿では,表現型GNNモデルの一般化性を向上させるGNNフレームワークとして,分散保存GNN(DP-GNN)を提案する。
提案するDP-GNNフレームワークを,グラフ分類タスクのための複数のベンチマークデータセット上で評価する。
論文 参考訳(メタデータ) (2022-02-27T19:16:26Z) - KerGNNs: Interpretable Graph Neural Networks with Graph Kernels [14.421535610157093]
グラフニューラルネットワーク(GNN)は、下流グラフ関連タスクにおける最先端の手法となっている。
我々は新しいGNNフレームワークKernel Graph Neural Networks(KerGNNs)を提案する。
KerGNNはグラフカーネルをGNNのメッセージパッシングプロセスに統合する。
提案手法は,既存の最先端手法と比較して,競争性能が向上することを示す。
論文 参考訳(メタデータ) (2022-01-03T06:16:30Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
グラフニューラルネットワーク(GNN)は、グラフでサポートされている信号のための情報処理アーキテクチャである。
これらは、個々の層がグラフ畳み込みフィルタのバンクを含む畳み込みニューラルネットワーク(CNN)の一般化である。
論文 参考訳(メタデータ) (2020-08-04T18:57:36Z) - GPT-GNN: Generative Pre-Training of Graph Neural Networks [93.35945182085948]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングにおいて強力であることが示されている。
生成事前学習によりGNNを初期化するためのGPT-GNNフレームワークを提案する。
GPT-GNNは、様々な下流タスクにおいて、事前トレーニングを最大9.1%行うことなく、最先端のGNNモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2020-06-27T20:12:33Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
既存のGNNモデルの多くは浅く、本質的に機能中心である。
我々は,既存の浅いGNNがグラフ構造をよく保存できないことを経験的かつ解析的に示す。
本稿では,グラフ構造保存におけるGNNの能力を高めるプラグインモジュールであるEigen-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-08T02:47:38Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。