Implicit Rate-Constrained Optimization of Non-decomposable Objectives
- URL: http://arxiv.org/abs/2107.10960v1
- Date: Fri, 23 Jul 2021 00:04:39 GMT
- Title: Implicit Rate-Constrained Optimization of Non-decomposable Objectives
- Authors: Abhishek Kumar, Harikrishna Narasimhan, Andrew Cotter
- Abstract summary: We consider a family of constrained optimization problems arising in machine learning.
Our key idea is to formulate a rate-constrained optimization that expresses the threshold parameter as a function of the model parameters.
We show how the resulting optimization problem can be solved using standard gradient based methods.
- Score: 37.43791617018009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a popular family of constrained optimization problems arising in
machine learning that involve optimizing a non-decomposable evaluation metric
with a certain thresholded form, while constraining another metric of interest.
Examples of such problems include optimizing the false negative rate at a fixed
false positive rate, optimizing precision at a fixed recall, optimizing the
area under the precision-recall or ROC curves, etc. Our key idea is to
formulate a rate-constrained optimization that expresses the threshold
parameter as a function of the model parameters via the Implicit Function
theorem. We show how the resulting optimization problem can be solved using
standard gradient based methods. Experiments on benchmark datasets demonstrate
the effectiveness of our proposed method over existing state-of-the art
approaches for these problems.
Related papers
- BO4IO: A Bayesian optimization approach to inverse optimization with uncertainty quantification [5.031974232392534]
This work addresses data-driven inverse optimization (IO)
The goal is to estimate unknown parameters in an optimization model from observed decisions that can be assumed to be optimal or near-optimal.
arXiv Detail & Related papers (2024-05-28T06:52:17Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Predict+Optimize for Packing and Covering LPs with Unknown Parameters in
Constraints [5.762370982168012]
We propose a novel and practically relevant framework for the Predict+ setting, but with unknown parameters in both the objective and the constraints.
We introduce the notion of a correction function, and an additional penalty term in the loss function, modelling practical scenarios where an estimated optimal solution can be modified into a feasible solution after the true parameters are revealed.
Our approach is inspired by the prior work of Mandi and Guns, though with crucial modifications and re-derivations for our very different setting.
arXiv Detail & Related papers (2022-09-08T09:28:24Z) - Non-Convex Optimization with Certificates and Fast Rates Through Kernel
Sums of Squares [68.8204255655161]
We consider potentially non- optimized approximation problems.
In this paper, we propose an algorithm that achieves close to optimal a priori computational guarantees.
arXiv Detail & Related papers (2022-04-11T09:37:04Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Efficient hyperparameter optimization by way of PAC-Bayes bound
minimization [4.191847852775072]
We present an alternative objective that is equivalent to a Probably Approximately Correct-Bayes (PAC-Bayes) bound on the expected out-of-sample error.
We then devise an efficient gradient-based algorithm to minimize this objective.
arXiv Detail & Related papers (2020-08-14T15:54:51Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Objective-Sensitive Principal Component Analysis for High-Dimensional
Inverse Problems [0.0]
We present a novel approach for adaptive, differentiable parameterization of large-scale random fields.
The developed technique is based on principal component analysis (PCA) but modifies a purely data-driven basis of principal components considering objective function behavior.
Three algorithms for optimal parameter decomposition are presented and applied to an objective of 2D synthetic history matching.
arXiv Detail & Related papers (2020-06-02T18:51:17Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.