End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty
- URL: http://arxiv.org/abs/2402.07772v1
- Date: Mon, 12 Feb 2024 16:33:35 GMT
- Title: End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty
- Authors: My H Dinh and James Kotary and Ferdinando Fioretto
- Abstract summary: The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
- Score: 55.04219793298687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many decision processes in artificial intelligence and operations research
are modeled by parametric optimization problems whose defining parameters are
unknown and must be inferred from observable data. The Predict-Then-Optimize
(PtO) paradigm in machine learning aims to maximize downstream decision quality
by training the parametric inference model end-to-end with the subsequent
constrained optimization. This requires backpropagation through the
optimization problem using approximation techniques specific to the problem's
form, especially for nondifferentiable linear and mixed-integer programs. This
paper extends the PtO methodology to optimization problems with
nondifferentiable Ordered Weighted Averaging (OWA) objectives, known for their
ability to ensure properties of fairness and robustness in decision models.
Through a collection of training techniques and proposed application settings,
it shows how optimization of OWA functions can be effectively integrated with
parametric prediction for fair and robust optimization under uncertainty.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - BO4IO: A Bayesian optimization approach to inverse optimization with uncertainty quantification [5.031974232392534]
This work addresses data-driven inverse optimization (IO)
The goal is to estimate unknown parameters in an optimization model from observed decisions that can be assumed to be optimal or near-optimal.
arXiv Detail & Related papers (2024-05-28T06:52:17Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Predict+Optimize for Packing and Covering LPs with Unknown Parameters in
Constraints [5.762370982168012]
We propose a novel and practically relevant framework for the Predict+ setting, but with unknown parameters in both the objective and the constraints.
We introduce the notion of a correction function, and an additional penalty term in the loss function, modelling practical scenarios where an estimated optimal solution can be modified into a feasible solution after the true parameters are revealed.
Our approach is inspired by the prior work of Mandi and Guns, though with crucial modifications and re-derivations for our very different setting.
arXiv Detail & Related papers (2022-09-08T09:28:24Z) - Teaching Networks to Solve Optimization Problems [13.803078209630444]
We propose to replace the iterative solvers altogether with a trainable parametric set function.
We show the feasibility of learning such parametric (set) functions to solve various classic optimization problems.
arXiv Detail & Related papers (2022-02-08T19:13:13Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.