The decomposition of the higher-order homology embedding constructed
from the $k$-Laplacian
- URL: http://arxiv.org/abs/2107.10970v1
- Date: Fri, 23 Jul 2021 00:40:01 GMT
- Title: The decomposition of the higher-order homology embedding constructed
from the $k$-Laplacian
- Authors: Yu-Chia Chen, Marina Meil\u{a}
- Abstract summary: The null space of the $k$-th order Laplacian $mathbfmathcal L_k$ encodes the non-trivial topology of a manifold or a network.
We propose an algorithm to factorize the homology embedding into subspaces corresponding to a manifold's simplest topological components.
- Score: 5.076419064097734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The null space of the $k$-th order Laplacian $\mathbf{\mathcal L}_k$, known
as the {\em $k$-th homology vector space}, encodes the non-trivial topology of
a manifold or a network. Understanding the structure of the homology embedding
can thus disclose geometric or topological information from the data. The study
of the null space embedding of the graph Laplacian $\mathbf{\mathcal L}_0$ has
spurred new research and applications, such as spectral clustering algorithms
with theoretical guarantees and estimators of the Stochastic Block Model. In
this work, we investigate the geometry of the $k$-th homology embedding and
focus on cases reminiscent of spectral clustering. Namely, we analyze the {\em
connected sum} of manifolds as a perturbation to the direct sum of their
homology embeddings. We propose an algorithm to factorize the homology
embedding into subspaces corresponding to a manifold's simplest topological
components. The proposed framework is applied to the {\em shortest homologous
loop detection} problem, a problem known to be NP-hard in general. Our spectral
loop detection algorithm scales better than existing methods and is effective
on diverse data such as point clouds and images.
Related papers
- Boundary Detection Algorithm Inspired by Locally Linear Embedding [8.259071011958254]
We propose a method for detecting boundary points inspired by the widely used locally linear embedding algorithm.
We implement this method using two nearest neighborhood search schemes: the $epsilon$-radius ball scheme and the $K$-nearest neighbor scheme.
arXiv Detail & Related papers (2024-06-26T16:05:57Z) - Detection-Recovery Gap for Planted Dense Cycles [72.4451045270967]
We consider a model where a dense cycle with expected bandwidth $n tau$ and edge density $p$ is planted in an ErdHos-R'enyi graph $G(n,q)$.
We characterize the computational thresholds for the associated detection and recovery problems for the class of low-degree algorithms.
arXiv Detail & Related papers (2023-02-13T22:51:07Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
We study differentially private approximation algorithms for hierarchical clustering.
We show strong lower bounds for the problem: that any $epsilon$-DP algorithm must exhibit $O(|V|2/ epsilon)$-additive error for an input dataset.
We propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly.
arXiv Detail & Related papers (2023-01-31T19:14:30Z) - Deep Invertible Approximation of Topologically Rich Maps between
Manifolds [17.60434807901964]
We show how to design neural networks that allow for stable universal approximation of maps between topologically interesting manifold.
By exploiting the topological parallels between locally bilipschitz maps, covering spaces, and local homeomorphisms, we find that a novel network of the form $mathcalT circ p circ mathcalE$ is a universal approximator of local diffeomorphisms.
We also outline possible extensions of our architecture to address molecular imaging of molecules with symmetries.
arXiv Detail & Related papers (2022-10-02T17:14:43Z) - Subspace clustering in high-dimensions: Phase transitions \&
Statistical-to-Computational gap [24.073221004661427]
A simple model to study subspace clustering is the high-dimensional $k$-Gaussian mixture model.
We provide an exact characterization of the statistically optimal reconstruction error in this model in the high-dimensional regime with extensive sparsity.
arXiv Detail & Related papers (2022-05-26T17:47:35Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
Simplicial complexes can be viewed as high dimensional generalizations of graphs that explicitly encode multi-way ordered relations.
We propose a graph convolutional model for learning functions parametrized by the $k$-homological features of simplicial complexes.
arXiv Detail & Related papers (2021-10-28T14:59:41Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
Most existing manifold learning algorithms replace the original data with lower dimensional coordinates.
This article proposes a new methodology for addressing these problems, allowing the estimated manifold between fitted data points.
arXiv Detail & Related papers (2021-10-14T15:50:38Z) - Fuzzy Clustering with Similarity Queries [56.96625809888241]
The fuzzy or soft objective is a popular generalization of the well-known $k$-means problem.
We show that by making few queries, the problem becomes easier to solve.
arXiv Detail & Related papers (2021-06-04T02:32:26Z) - Lattice partition recovery with dyadic CART [79.96359947166592]
We study piece-wise constant signals corrupted by additive Gaussian noise over a $d$-dimensional lattice.
Data of this form naturally arise in a host of applications, and the tasks of signal detection or testing, de-noising and estimation have been studied extensively in the statistical and signal processing literature.
In this paper we consider instead the problem of partition recovery, i.e.of estimating the partition of the lattice induced by the constancy regions of the unknown signal.
We prove that a DCART-based procedure consistently estimates the underlying partition at a rate of order $sigma2 k*
arXiv Detail & Related papers (2021-05-27T23:41:01Z) - Finding Geometric Models by Clustering in the Consensus Space [61.65661010039768]
We propose a new algorithm for finding an unknown number of geometric models, e.g., homographies.
We present a number of applications where the use of multiple geometric models improves accuracy.
These include pose estimation from multiple generalized homographies; trajectory estimation of fast-moving objects.
arXiv Detail & Related papers (2021-03-25T14:35:07Z) - Data Structures & Algorithms for Exact Inference in Hierarchical
Clustering [41.24805506595378]
We present novel dynamic-programming algorithms for emphexact inference in hierarchical clustering based on a novel trellis data structure.
Our algorithms scale in time and space proportional to the powerset of $N$ elements which is super-exponentially more efficient than explicitly considering each of the (2N-3)!! possible hierarchies.
arXiv Detail & Related papers (2020-02-26T17:43:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.