Economic Recession Prediction Using Deep Neural Network
- URL: http://arxiv.org/abs/2107.10980v1
- Date: Wed, 21 Jul 2021 22:55:14 GMT
- Title: Economic Recession Prediction Using Deep Neural Network
- Authors: Zihao Wang, Kun Li, Steve Q. Xia, Hongfu Liu
- Abstract summary: We identify the deep learning methodology of Bi-LSTM with Autoencoder as the most accurate model to forecast the beginning and end of economic recessions in the U.S.
We adopt commonly-available macro and market-condition features to compare the ability of different machine learning models to generate good predictions both in-sample and out-of-sample.
- Score: 26.504845007567972
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We investigate the effectiveness of different machine learning methodologies
in predicting economic cycles. We identify the deep learning methodology of
Bi-LSTM with Autoencoder as the most accurate model to forecast the beginning
and end of economic recessions in the U.S. We adopt commonly-available macro
and market-condition features to compare the ability of different machine
learning models to generate good predictions both in-sample and out-of-sample.
The proposed model is flexible and dynamic when both predictive variables and
model coefficients vary over time. It provided good out-of-sample predictions
for the past two recessions and early warning about the COVID-19 recession.
Related papers
- GARCH-Informed Neural Networks for Volatility Prediction in Financial Markets [0.0]
We present a new, hybrid Deep Learning model that captures and forecasting market volatility more accurately than either class of models are capable of on their own.
When compared to other time series models, GINN showed superior out-of-sample prediction performance in terms of the Coefficient of Determination ($R2$), Mean Squared Error (MSE), and Mean Absolute Error (MAE)
arXiv Detail & Related papers (2024-09-30T23:53:54Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Machine Learning for Economic Forecasting: An Application to China's GDP Growth [2.899333881379661]
This paper employs various machine learning models to predict the quarterly real GDP growth of China.
It analyzes the factors contributing to the performance differences among these models.
arXiv Detail & Related papers (2024-07-04T03:04:55Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Nowcasting Madagascar's real GDP using machine learning algorithms [0.0]
We investigate the predictive power of different machine learning algorithms to nowcast Madagascar's gross domestic product (GDP)
We trained popular regression models, including linear regularized regression (Ridge, Lasso, Elastic-net), dimensionality reduction model (principal component regression), k-nearest neighbors algorithm (k-NN regression)
We measured the nowcast accuracy of each model by calculating the root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE)
arXiv Detail & Related papers (2023-12-24T20:40:54Z) - Forecasting and stabilizing chaotic regimes in two macroeconomic models
via artificial intelligence technologies and control methods [0.3670422696827526]
One of the key tasks in the economy is forecasting the economic agents' expectations of the future values of economic variables.
The behavior of mathematical models can be irregular, including chaotic, which reduces their predictive power.
We study the regimes of behavior of two economic models and identify irregular dynamics in them.
arXiv Detail & Related papers (2023-02-20T11:55:15Z) - Interpreting and predicting the economy flows: A time-varying parameter
global vector autoregressive integrated the machine learning model [0.0]
The paper proposes a time-varying parameter global vector autoregressive framework for predicting and analysing developed region economic variables.
We show the convincing in-sample of our proposed model in all economic variables and relatively high precision out-of-sample predictions with different-frequency economic inputs.
arXiv Detail & Related papers (2022-07-31T06:24:15Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.