Communication Efficiency in Federated Learning: Achievements and
Challenges
- URL: http://arxiv.org/abs/2107.10996v1
- Date: Fri, 23 Jul 2021 02:13:11 GMT
- Title: Communication Efficiency in Federated Learning: Achievements and
Challenges
- Authors: Osama Shahid, Seyedamin Pouriyeh, Reza M. Parizi, Quan Z. Sheng,
Gautam Srivastava, Liang Zhao
- Abstract summary: Federated Learning (FL) is known to perform Machine Learning tasks in a distributed manner.
In this paper, we present a survey of the research that is performed to overcome the communication constraints in an FL setting.
- Score: 20.280125296921348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is known to perform Machine Learning tasks in a
distributed manner. Over the years, this has become an emerging technology
especially with various data protection and privacy policies being imposed FL
allows performing machine learning tasks whilst adhering to these challenges.
As with the emerging of any new technology, there are going to be challenges
and benefits. A challenge that exists in FL is the communication costs, as FL
takes place in a distributed environment where devices connected over the
network have to constantly share their updates this can create a communication
bottleneck. In this paper, we present a survey of the research that is
performed to overcome the communication constraints in an FL setting.
Related papers
- Exploring the Practicality of Federated Learning: A Survey Towards the Communication Perspective [1.088537320059347]
Federated Learning (FL) is a promising paradigm that offers significant advancements in privacy-preserving, decentralized machine learning.
However, the practical deployment of FL systems faces a significant bottleneck: the communication overhead.
This survey investigates various strategies and advancements made in communication-efficient FL.
arXiv Detail & Related papers (2024-05-30T19:21:33Z) - Federated Learning with New Knowledge: Fundamentals, Advances, and
Futures [69.8830772538421]
This paper systematically defines the main sources of new knowledge in Federated Learning (FL)
We examine the impact of the form and timing of new knowledge arrival on the incorporation process.
We discuss the potential future directions for FL with new knowledge, considering a variety of factors such as scenario setups, efficiency, and security.
arXiv Detail & Related papers (2024-02-03T21:29:31Z) - Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
This paper examines the added-value of implementing Federated Learning throughout all levels of the protocol stack.
It presents important FL applications, addresses hot topics, provides valuable insights and explicits guidance for future research and developments.
Our concluding remarks aim to leverage the synergy between FL and future 6G, while highlighting FL's potential to revolutionize wireless industry.
arXiv Detail & Related papers (2023-12-07T20:39:57Z) - The Role of Federated Learning in a Wireless World with Foundation Models [59.8129893837421]
Foundation models (FMs) are general-purpose artificial intelligence (AI) models that have recently enabled multiple brand-new generative AI applications.
Currently, the exploration of the interplay between FMs and federated learning (FL) is still in its nascent stage.
This article explores the extent to which FMs are suitable for FL over wireless networks, including a broad overview of research challenges and opportunities.
arXiv Detail & Related papers (2023-10-06T04:13:10Z) - Federated Learning in Intelligent Transportation Systems: Recent
Applications and Open Problems [30.511443961960147]
As a distributed machine learning technology, federated learning (FL) has received extensive attention due to its outstanding privacy protection properties.
We conduct a comprehensive survey of the latest developments in FL for ITS.
We review existing deployments of FL in ITS across various scenarios, and discuss specific potential issues in object recognition, traffic management, and service providing scenarios.
arXiv Detail & Related papers (2023-09-20T03:39:30Z) - Edge-Native Intelligence for 6G Communications Driven by Federated
Learning: A Survey of Trends and Challenges [14.008159759350264]
A new technique, coined as federated learning (FL), arose to bring machine learning to the edge of wireless networks.
FL exploits both decentralised datasets and computing resources of participating clients to develop a generalised ML model without compromising data privacy.
The purpose of this survey is to provide an overview of the state-of-the-art of FL applications in key wireless technologies.
arXiv Detail & Related papers (2021-11-14T17:13:34Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - To Talk or to Work: Flexible Communication Compression for Energy
Efficient Federated Learning over Heterogeneous Mobile Edge Devices [78.38046945665538]
federated learning (FL) over massive mobile edge devices opens new horizons for numerous intelligent mobile applications.
FL imposes huge communication and computation burdens on participating devices due to periodical global synchronization and continuous local training.
We develop a convergence-guaranteed FL algorithm enabling flexible communication compression.
arXiv Detail & Related papers (2020-12-22T02:54:18Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z) - Evaluating the Communication Efficiency in Federated Learning Algorithms [3.713348568329249]
Recently, in light of new privacy legislations in many countries, the concept of Federated Learning (FL) has been introduced.
In FL, mobile users are empowered to learn a global model by aggregating their local models, without sharing the privacy-sensitive data.
This raises the challenge of communication cost when implementing FL at large scale.
arXiv Detail & Related papers (2020-04-06T15:31:54Z) - Federated Learning for Resource-Constrained IoT Devices: Panoramas and
State-of-the-art [12.129978716326676]
We introduce some recently implemented real-life applications of Federated Learning.
In large-scale networks, there may be clients with varying computational resource capabilities.
We highlight future directions in the FL area concerning resource-constrained devices.
arXiv Detail & Related papers (2020-02-25T01:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.