Federated Learning in Intelligent Transportation Systems: Recent
Applications and Open Problems
- URL: http://arxiv.org/abs/2309.11039v1
- Date: Wed, 20 Sep 2023 03:39:30 GMT
- Title: Federated Learning in Intelligent Transportation Systems: Recent
Applications and Open Problems
- Authors: Shiying Zhang, Jun Li, Long Shi, Ming Ding, Dinh C. Nguyen, Wuzheng
Tan, Jian Weng, Zhu Han
- Abstract summary: As a distributed machine learning technology, federated learning (FL) has received extensive attention due to its outstanding privacy protection properties.
We conduct a comprehensive survey of the latest developments in FL for ITS.
We review existing deployments of FL in ITS across various scenarios, and discuss specific potential issues in object recognition, traffic management, and service providing scenarios.
- Score: 30.511443961960147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intelligent transportation systems (ITSs) have been fueled by the rapid
development of communication technologies, sensor technologies, and the
Internet of Things (IoT). Nonetheless, due to the dynamic characteristics of
the vehicle networks, it is rather challenging to make timely and accurate
decisions of vehicle behaviors. Moreover, in the presence of mobile wireless
communications, the privacy and security of vehicle information are at constant
risk. In this context, a new paradigm is urgently needed for various
applications in dynamic vehicle environments. As a distributed machine learning
technology, federated learning (FL) has received extensive attention due to its
outstanding privacy protection properties and easy scalability. We conduct a
comprehensive survey of the latest developments in FL for ITS. Specifically, we
initially research the prevalent challenges in ITS and elucidate the
motivations for applying FL from various perspectives. Subsequently, we review
existing deployments of FL in ITS across various scenarios, and discuss
specific potential issues in object recognition, traffic management, and
service providing scenarios. Furthermore, we conduct a further analysis of the
new challenges introduced by FL deployment and the inherent limitations that FL
alone cannot fully address, including uneven data distribution, limited storage
and computing power, and potential privacy and security concerns. We then
examine the existing collaborative technologies that can help mitigate these
challenges. Lastly, we discuss the open challenges that remain to be addressed
in applying FL in ITS and propose several future research directions.
Related papers
- Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
This paper examines the added-value of implementing Federated Learning throughout all levels of the protocol stack.
It presents important FL applications, addresses hot topics, provides valuable insights and explicits guidance for future research and developments.
Our concluding remarks aim to leverage the synergy between FL and future 6G, while highlighting FL's potential to revolutionize wireless industry.
arXiv Detail & Related papers (2023-12-07T20:39:57Z) - Over-The-Air Federated Learning: Status Quo, Open Challenges, and Future
Directions [78.5371215066019]
Over-the-air federated learning (OTA-FL) enables users at the network edge to share spectrum resources and achieves efficient and low-latency global model aggregation.
This paper provides a holistic review of progress in OTA-FL and points to potential future research directions.
arXiv Detail & Related papers (2023-07-03T12:44:52Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Intelligent Traffic Monitoring with Hybrid AI [78.65479854534858]
We introduce HANS, a neuro-symbolic architecture for multi-modal context understanding.
We show how HANS addresses the challenges associated with traffic monitoring while being able to integrate with a wide range of reasoning methods.
arXiv Detail & Related papers (2022-08-31T17:47:22Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - AI-Empowered Data Offloading in MEC-Enabled IoV Networks [40.75165195026413]
This article surveys research studies that use AI as part of the data offloading process, categorized based on four main issues: reliability, security, energy management, and service seller profit.
Various challenges to the process of offloading data in a MEC-enabled IoV network have emerged, such as offloading reliability in highly mobile environments, security for users within the same network, and energy management to keep users from being disincentivized to participate in the network.
arXiv Detail & Related papers (2022-03-31T09:31:53Z) - Communication Efficiency in Federated Learning: Achievements and
Challenges [20.280125296921348]
Federated Learning (FL) is known to perform Machine Learning tasks in a distributed manner.
In this paper, we present a survey of the research that is performed to overcome the communication constraints in an FL setting.
arXiv Detail & Related papers (2021-07-23T02:13:11Z) - Federated Learning for Intrusion Detection System: Concepts, Challenges
and Future Directions [0.20236506875465865]
Intrusion detection systems play a significant role in ensuring security and privacy of smart devices.
The present paper aims to present an extensive and exhaustive review on the use of FL in intrusion detection system.
arXiv Detail & Related papers (2021-06-16T13:13:04Z) - Making a Case for Federated Learning in the Internet of Vehicles and
Intelligent Transportation Systems [6.699060157800401]
Internet of Vehicles (IoV) is transformed into an Intelligent Transportation System (ITS)
To address these challenges, Federated Learning, a collaborative and distributed intelligence technique, is suggested.
With a multitude of use cases and benefits, Federated Learning is a key enabler for ITS and is poised to achieve widespread implementation in 5G and beyond networks and applications.
arXiv Detail & Related papers (2021-02-19T20:07:17Z) - Transfer Learning for Future Wireless Networks: A Comprehensive Survey [49.746711269488515]
This article aims to provide a comprehensive survey on applications of Transfer Learning in wireless networks.
We first provide an overview of TL including formal definitions, classification, and various types of TL techniques.
We then discuss diverse TL approaches proposed to address emerging issues in wireless networks.
arXiv Detail & Related papers (2021-02-15T14:19:55Z) - Federated Learning in Vehicular Networks [41.89469856322786]
Federated learning (FL) framework has been introduced as an efficient tool with the goal of reducing transmission overhead.
In this paper, we investigate the usage of FL over centralized learning (CL) in vehicular network applications to develop intelligent transportation systems.
We identify the major challenges from both learning perspective, i.e., data labeling and model training, and from the communications point of view, i.e., data rate, reliability, transmission overhead, privacy and resource management.
arXiv Detail & Related papers (2020-06-02T06:32:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.