論文の概要: Human Pose Estimation from Sparse Inertial Measurements through
Recurrent Graph Convolution
- arxiv url: http://arxiv.org/abs/2107.11214v1
- Date: Fri, 23 Jul 2021 13:23:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-26 16:49:51.172608
- Title: Human Pose Estimation from Sparse Inertial Measurements through
Recurrent Graph Convolution
- Title(参考訳): リカレントグラフ畳み込みによるばらばらな慣性測定による人間のポーズ推定
- Authors: Patrik Puchert, Timo Ropinski
- Abstract要約: 本稿では,ヒトのポーズ推定のための近接適応グラフ畳み込み長短メモリネットワーク(AAGC-LSTM)を提案する。
AAGC-LSTMは、単一ネットワーク操作における空間的依存と時間的依存を結合する。
- 参考スコア(独自算出の注目度): 7.975054349697541
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We propose the adjacency adaptive graph convolutional long-short term memory
network (AAGC-LSTM) for human pose estimation from sparse inertial
measurements, obtained from only 6 measurement units. The AAGC-LSTM combines
both spatial and temporal dependency in a single network operation. This is
made possible by equipping graph convolutions with adjacency adaptivity, which
also allows for learning unknown dependencies of the human body joints. To
further boost accuracy, we propose longitudinal loss weighting to consider
natural movement patterns, as well as body-aware contralateral data
augmentation. By combining these contributions, we are able to utilize the
inherent graph nature of the human body, and can thus outperform the state of
the art for human pose estimation from sparse inertial measurements.
- Abstract(参考訳): 6つの測定単位から得られたスパース慣性測定から人のポーズ推定のためのアジャシアン適応グラフ畳み込み長短メモリネットワーク(AAGC-LSTM)を提案する。
AAGC-LSTMは、単一ネットワーク操作における空間的および時間的依存を結合する。
グラフ畳み込みに隣接適応性を持たせることで、人間の関節の未知の依存関係を学習することができる。
さらに精度を高めるために,自然運動パターンを考慮した縦断損失重み付けと,体認識による対側データ拡張を提案する。
これらの貢献を組み合わせることで、人体の固有のグラフの性質を生かして、少ない慣性測定から人間のポーズ推定の技術を上回ることができる。
関連論文リスト
- Integrative Deep Learning Framework for Parkinson's Disease Early Detection using Gait Cycle Data Measured by Wearable Sensors: A CNN-GRU-GNN Approach [0.3222802562733786]
対象のバイナリ分類に適した,先駆的な深層学習アーキテクチャを提案する。
我々のモデルは、1D畳み込みニューラルネットワーク(CNN)、GRU(Gated Recurrent Units)、GNN(Graph Neural Network)のパワーを利用する。
提案モデルでは, 99.51%, 99.57%, 99.71%, 99.64%のスコアが得られた。
論文 参考訳(メタデータ) (2024-04-09T15:19:13Z) - Analyzing Participants' Engagement during Online Meetings Using Unsupervised Remote Photoplethysmography with Behavioral Features [50.82725748981231]
エンゲージメント測定は、医療、教育、サービスに応用される。
生理的特徴と行動的特徴の使用は可能であるが、従来の生理的測定の非現実性は接触センサーの必要性により生じる。
コンタクトセンサの代替として, 教師なし光胸腺造影(胸腔鏡)の有用性を実証する。
論文 参考訳(メタデータ) (2024-04-05T20:39:16Z) - Full-Body Motion Reconstruction with Sparse Sensing from Graph
Perspective [22.761692765158646]
スパースセンサーデータから3Dフルボディのポーズを推定することは、拡張現実と仮想現実における現実的な人間の動きを再現するための重要な手法である。
人体を表すためにBPG(Body Pose Graph)を使用し、その課題をグラフ不足ノードの予測問題に変換する。
提案手法の有効性は,特に下肢動作において,他のベースライン法よりも高い精度で達成できることが証明されている。
論文 参考訳(メタデータ) (2024-01-22T09:29:42Z) - Spatio-temporal MLP-graph network for 3D human pose estimation [8.267311047244881]
グラフ畳み込みネットワークとその変種は3次元人間のポーズ推定において大きな可能性を示している。
暗黙の伝搬フェアリングを用いたグラフフィルタリングにより得られる新しい重み付きヤコビ特徴則を導入する。
また, 関節間の関係を学習するために, 隣接変調を用いた。
論文 参考訳(メタデータ) (2023-08-29T14:00:55Z) - Back to MLP: A Simple Baseline for Human Motion Prediction [59.18776744541904]
本稿では、歴史的に観察されたシーケンスから将来の身体のポーズを予測することによる、人間の動作予測の課題に取り組む。
これらの手法の性能は、0.14Mパラメータしか持たない軽量で純粋にアーキテクチャアーキテクチャによって超えることができることを示す。
Human3.6M, AMASS, 3DPWデータセットの徹底的な評価は, siMLPeをダブした我々の手法が, 他のアプローチよりも一貫して優れていることを示している。
論文 参考訳(メタデータ) (2022-07-04T16:35:58Z) - Koopman pose predictions for temporally consistent human walking
estimations [11.016730029019522]
そこで我々は,下肢運動の非線形ダイナミクスを組み込んだクープマン理論に基づく新しい因子グラフ因子を提案する。
以上の結果から,本手法は骨格形状の外れ率を約1m削減し,自然歩行軌跡を最大10m以上保存できることが示唆された。
論文 参考訳(メタデータ) (2022-05-05T16:16:06Z) - Learning Dynamical Human-Joint Affinity for 3D Pose Estimation in Videos [47.601288796052714]
Graph Convolution Network (GCN)は、ビデオにおける3次元人間のポーズ推定に成功している。
新しい動的グラフネットワーク(DGNet)は、ビデオから空間的・時間的関節関係を適応的に学習することにより、3次元のポーズを推定できる。
論文 参考訳(メタデータ) (2021-09-15T15:06:19Z) - Conditional Directed Graph Convolution for 3D Human Pose Estimation [23.376538132362498]
グラフ畳み込みネットワークは、人間の骨格を非方向グラフとして表現することで、人間のポーズ推定を大幅に改善した。
本稿では,人間の骨格をノードとして,骨を親関節から子関節へ向けたエッジとして有向グラフとして表現することを提案する。
論文 参考訳(メタデータ) (2021-07-16T09:50:40Z) - An Adversarial Human Pose Estimation Network Injected with Graph
Structure [75.08618278188209]
本稿では,いくつかの関節が見えない場合に,可視関節の局所化精度を向上させるために,新しいGAN(Generative Adversarial Network)を設計する。
ネットワークは、2つのシンプルで効率的なモジュール、カスケード機能ネットワーク(CFN)とグラフ構造ネットワーク(GSN)で構成されています。
論文 参考訳(メタデータ) (2021-03-29T12:07:08Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
カルチャーネットワーク(GCN)は、スケルトンをグラフとしてモデル化することで、スケルトンに基づく人間の行動認識の性能を約束する。
最近提案されたG時間に基づく手法のほとんどは、ネットワークの各層におけるグラフ構造を学習することで、性能を向上させる。
論文 参考訳(メタデータ) (2020-11-07T19:03:04Z) - Anatomy-aware 3D Human Pose Estimation with Bone-based Pose
Decomposition [92.99291528676021]
3次元関節位置を直接回帰するのではなく,骨方向予測と骨長予測に分解する。
私たちのモチベーションは、人間の骨格の骨の長さが時間とともに一定であることにあります。
我々の完全なモデルは、Human3.6MとMPI-INF-3DHPデータセットにおいて、以前の最高の結果よりも優れています。
論文 参考訳(メタデータ) (2020-02-24T15:49:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。