Going Deeper into Semi-supervised Person Re-identification
- URL: http://arxiv.org/abs/2107.11566v1
- Date: Sat, 24 Jul 2021 09:28:13 GMT
- Title: Going Deeper into Semi-supervised Person Re-identification
- Authors: Olga Moskvyak, Frederic Maire, Feras Dayoub, Mahsa Baktashmotlagh
- Abstract summary: We focus on a semi-supervised approach that requires only a subset of the training data to be labeled.
Our method outperforms the state-of-the-art results on three large-scale person re-id datasets.
- Score: 12.37129078618206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Person re-identification is the challenging task of identifying a person
across different camera views. Training a convolutional neural network (CNN)
for this task requires annotating a large dataset, and hence, it involves the
time-consuming manual matching of people across cameras. To reduce the need for
labeled data, we focus on a semi-supervised approach that requires only a
subset of the training data to be labeled. We conduct a comprehensive survey in
the area of person re-identification with limited labels. Existing works in
this realm are limited in the sense that they utilize features from multiple
CNNs and require the number of identities in the unlabeled data to be known. To
overcome these limitations, we propose to employ part-based features from a
single CNN without requiring the knowledge of the label space (i.e., the number
of identities). This makes our approach more suitable for practical scenarios,
and it significantly reduces the need for computational resources. We also
propose a PartMixUp loss that improves the discriminative ability of learned
part-based features for pseudo-labeling in semi-supervised settings. Our method
outperforms the state-of-the-art results on three large-scale person re-id
datasets and achieves the same level of performance as fully supervised methods
with only one-third of labeled identities.
Related papers
- Large-Scale Pre-training for Person Re-identification with Noisy Labels [125.49696935852634]
We develop a large-scale Pre-training framework utilizing Noisy Labels (PNL)
In principle, joint learning of these three modules not only clusters similar examples to one prototype, but also rectifies noisy labels based on the prototype assignment.
This simple pre-training task provides a scalable way to learn SOTA Re-ID representations from scratch on "LUPerson-NL" without bells and whistles.
arXiv Detail & Related papers (2022-03-30T17:59:58Z) - Weakly Supervised Person Search with Region Siamese Networks [65.76237418040071]
Supervised learning is dominant in person search, but it requires elaborate labeling of bounding boxes and identities.
We present a weakly supervised setting where only bounding box annotations are available.
Our model achieves the rank-1 of 87.1% and mAP of 86.0% on CUHK-SYSU benchmark.
arXiv Detail & Related papers (2021-09-13T16:33:27Z) - Joint Optimization in Edge-Cloud Continuum for Federated Unsupervised
Person Re-identification [24.305773593017932]
FedUReID is a federated unsupervised person ReID system to learn person ReID models without any labels while preserving privacy.
To tackle the problem that edges vary in data volumes and distributions, we personalize training in edges with joint optimization of cloud and edge.
Experiments on eight person ReID datasets demonstrate that FedUReID achieves higher accuracy but also reduces computation cost by 29%.
arXiv Detail & Related papers (2021-08-14T08:35:55Z) - Unsupervised Pre-training for Person Re-identification [90.98552221699508]
We present a large scale unlabeled person re-identification (Re-ID) dataset "LUPerson"
We make the first attempt of performing unsupervised pre-training for improving the generalization ability of the learned person Re-ID feature representation.
arXiv Detail & Related papers (2020-12-07T14:48:26Z) - DomainMix: Learning Generalizable Person Re-Identification Without Human
Annotations [89.78473564527688]
This paper shows how to use labeled synthetic dataset and unlabeled real-world dataset to train a universal model.
In this way, human annotations are no longer required, and it is scalable to large and diverse real-world datasets.
Experimental results show that the proposed annotation-free method is more or less comparable to the counterpart trained with full human annotations.
arXiv Detail & Related papers (2020-11-24T08:15:53Z) - Semantics-Guided Clustering with Deep Progressive Learning for
Semi-Supervised Person Re-identification [58.01834972099855]
Person re-identification (re-ID) requires one to match images of the same person across camera views.
We propose a novel framework of Semantics-Guided Clustering with Deep Progressive Learning (SGC-DPL) to jointly exploit the above data.
Our approach is able to augment the labeled training data in the semi-supervised setting.
arXiv Detail & Related papers (2020-10-02T18:02:35Z) - Temporal Continuity Based Unsupervised Learning for Person
Re-Identification [15.195514083289801]
We propose an unsupervised center-based clustering approach capable of progressively learning and exploiting the underlying re-id discriminative information.
We call our framework Temporal Continuity based Unsupervised Learning (TCUL)
Specifically, TCUL simultaneously does center based clustering of unlabeled (target) dataset and fine-tunes a convolutional neural network (CNN) pre-trained on irrelevant labeled (source) dataset.
It exploits temporally continuous nature of images within-camera jointly with spatial similarity of feature maps across-cameras to generate reliable pseudo-labels for training a re-identification model.
arXiv Detail & Related papers (2020-09-01T05:29:30Z) - Exploiting Temporal Coherence for Self-Supervised One-shot Video
Re-identification [44.9767103065442]
One-shot re-identification is a potential candidate towards reducing this labeling effort.
Current one-shot re-identification methods function by modeling the inter-relationships amongst the labeled and the unlabeled data.
We propose a new framework named Temporal Consistency Progressive Learning, which uses temporal coherence as a novel self-supervised auxiliary task.
arXiv Detail & Related papers (2020-07-21T19:49:06Z) - Intra-Camera Supervised Person Re-Identification [87.88852321309433]
We propose a novel person re-identification paradigm based on an idea of independent per-camera identity annotation.
This eliminates the most time-consuming and tedious inter-camera identity labelling process.
We formulate a Multi-tAsk mulTi-labEl (MATE) deep learning method for Intra-Camera Supervised (ICS) person re-id.
arXiv Detail & Related papers (2020-02-12T15:26:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.