論文の概要: GCExplainer: Human-in-the-Loop Concept-based Explanations for Graph
Neural Networks
- arxiv url: http://arxiv.org/abs/2107.11889v1
- Date: Sun, 25 Jul 2021 20:52:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-27 15:58:11.635630
- Title: GCExplainer: Human-in-the-Loop Concept-based Explanations for Graph
Neural Networks
- Title(参考訳): gcexplainer: グラフニューラルネットワークのためのヒューマン・イン・ザ・ループ概念に基づく説明
- Authors: Lucie Charlotte Magister, Dmitry Kazhdan, Vikash Singh, Pietro Li\`o
- Abstract要約: GCExplainerは、グラフニューラルネットワーク(GNN)のためのグローバルな概念に基づく説明のポストホック発見と抽出のための教師なしのアプローチである。
提案手法は5つのノード分類データセットと2つのグラフ分類データセット上で成功し,人間をループに配置することで高品質な概念表現を発見し,抽出できることを実証した。
- 参考スコア(独自算出の注目度): 0.3441021278275805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While graph neural networks (GNNs) have been shown to perform well on
graph-based data from a variety of fields, they suffer from a lack of
transparency and accountability, which hinders trust and consequently the
deployment of such models in high-stake and safety-critical scenarios. Even
though recent research has investigated methods for explaining GNNs, these
methods are limited to single-instance explanations, also known as local
explanations. Motivated by the aim of providing global explanations, we adapt
the well-known Automated Concept-based Explanation approach (Ghorbani et al.,
2019) to GNN node and graph classification, and propose GCExplainer.
GCExplainer is an unsupervised approach for post-hoc discovery and extraction
of global concept-based explanations for GNNs, which puts the human in the
loop. We demonstrate the success of our technique on five node classification
datasets and two graph classification datasets, showing that we are able to
discover and extract high-quality concept representations by putting the human
in the loop. We achieve a maximum completeness score of 1 and an average
completeness score of 0.753 across the datasets. Finally, we show that the
concept-based explanations provide an improved insight into the datasets and
GNN models compared to the state-of-the-art explanations produced by
GNNExplainer (Ying et al., 2019).
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、さまざまな分野のグラフベースのデータでよく機能することが示されているが、それらは透明性と説明責任の欠如に悩まされており、信頼性を損なうため、そのようなモデルがハイテイクで安全クリティカルなシナリオにデプロイされる。
近年、GNNの説明方法が研究されているが、これらの手法は局所的な説明として知られる単一インスタンスの説明に限られている。
グローバルな説明の提供を目的として,GNNノードとグラフ分類に有名なAutomated Concept-based Explanationアプローチ(Ghorbani et al., 2019)を適用し,GCExplainerを提案する。
GCExplainerは、GNNのグローバルな概念に基づく説明のポストホック発見と抽出のための教師なしのアプローチである。
提案手法は5つのノード分類データセットと2つのグラフ分類データセット上で成功し,人間をループに配置することで高品質な概念表現を発見し,抽出できることを実証した。
データセットの平均完全度スコアは1で、平均完全度スコアは0.753である。
最後に、概念に基づく説明は、GNNExplainer(Ying et al., 2019)が作成した最先端の説明と比較して、データセットとGNNモデルに関する洞察が向上していることを示す。
関連論文リスト
- Global Graph Counterfactual Explanation: A Subgraph Mapping Approach [54.42907350881448]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションに広くデプロイされている。
対実的説明は、GNN予測を変える入力グラフ上で最小の摂動を見つけることを目的としている。
我々は,グローバルレベルのグラフ対実的説明法であるGlobalGCEを提案する。
論文 参考訳(メタデータ) (2024-10-25T21:39:05Z) - Path-based Explanation for Knowledge Graph Completion [17.541247786437484]
GNNベースの知識グラフ補完モデルの結果に対する適切な説明は、モデルの透明性を高める。
KGCタスクを説明するための既存のプラクティスは、インスタンス/サブグラフベースのアプローチに依存している。
我々は、GNNベースのモデルを探索する最初のパスベースのKGC説明器であるPower-Linkを提案する。
論文 参考訳(メタデータ) (2024-01-04T14:19:37Z) - ACGAN-GNNExplainer: Auxiliary Conditional Generative Explainer for Graph
Neural Networks [7.077341403454516]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで有効であることが証明されているが、その基盤となるメカニズムは謎のままである。
この課題に対処し、信頼性の高い意思決定を可能にするため、近年多くのGNN説明者が提案されている。
本稿では、GNN説明分野にAuxiliary Generative Adrative Network (ACGAN)を導入し、emphACGANGNNExplainerと呼ばれる新しいGNN説明器を提案する。
論文 参考訳(メタデータ) (2023-09-29T01:20:28Z) - A Survey on Explainability of Graph Neural Networks [4.612101932762187]
グラフニューラルネットワーク(GNN)は、グラフベースの強力なディープラーニングモデルである。
本調査は,GNNの既存の説明可能性技術の概要を概観することを目的としている。
論文 参考訳(メタデータ) (2023-06-02T23:36:49Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
階層型推論グラフネットワークの学習による顔の親和性検証の問題点について検討する。
より強力で柔軟なキャパシティを利用するために,星型推論グラフネットワーク(S-RGN)を開発した。
また、より強力で柔軟なキャパシティを利用する階層型推論グラフネットワーク(H-RGN)も開発しています。
論文 参考訳(メタデータ) (2021-09-06T03:16:56Z) - Towards Self-Explainable Graph Neural Network [24.18369781999988]
グラフニューラルネットワーク(GNN)は、ディープニューラルネットワークをグラフ構造化データに一般化する。
GNNには説明責任がないため、モデルの透明性を求めるシナリオでは採用が制限される。
そこで本稿では,各未ラベルノードに対して$K$-nearestラベル付きノードを探索し,説明可能なノード分類を提案する。
論文 参考訳(メタデータ) (2021-08-26T22:45:11Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
グラフニューラルネットワーク(GNN)のためのパラメータ化説明器PGExplainerを提案する。
既存の研究と比較すると、PGExplainerはより優れた一般化能力を持ち、インダクティブな設定で容易に利用することができる。
合成データセットと実生活データセットの両方の実験では、グラフ分類の説明に関するAUCの相対的な改善が24.7%まで高い競争性能を示した。
論文 参考訳(メタデータ) (2020-11-09T17:15:03Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。