Transferable Dialogue Systems and User Simulators
- URL: http://arxiv.org/abs/2107.11904v1
- Date: Sun, 25 Jul 2021 22:59:09 GMT
- Title: Transferable Dialogue Systems and User Simulators
- Authors: Bo-Hsiang Tseng, Yinpei Dai, Florian Kreyssig, Bill Byrne
- Abstract summary: One of the difficulties in training dialogue systems is the lack of training data.
We explore the possibility of creating dialogue data through the interaction between a dialogue system and a user simulator.
We develop a modelling framework that can incorporate new dialogue scenarios through self-play between the two agents.
- Score: 17.106518400787156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the difficulties in training dialogue systems is the lack of training
data. We explore the possibility of creating dialogue data through the
interaction between a dialogue system and a user simulator. Our goal is to
develop a modelling framework that can incorporate new dialogue scenarios
through self-play between the two agents. In this framework, we first pre-train
the two agents on a collection of source domain dialogues, which equips the
agents to converse with each other via natural language. With further
fine-tuning on a small amount of target domain data, the agents continue to
interact with the aim of improving their behaviors using reinforcement learning
with structured reward functions. In experiments on the MultiWOZ dataset, two
practical transfer learning problems are investigated: 1) domain adaptation and
2) single-to-multiple domain transfer. We demonstrate that the proposed
framework is highly effective in bootstrapping the performance of the two
agents in transfer learning. We also show that our method leads to improvements
in dialogue system performance on complete datasets.
Related papers
- Injecting Salesperson's Dialogue Strategies in Large Language Models with Chain-of-Thought Reasoning [23.919423630938226]
SalesBot simulates dialogues transitioning from chit-chat to task-oriented scenarios to train sales agents.
Initial data lacked smooth transitions and coherent long-turn dialogues, resulting in poor naturalness in sales-customer interactions.
We introduce a novel model called SalesAgent, trained on salesperson's interactions, using chain-of-thought (CoT) reasoning.
arXiv Detail & Related papers (2024-04-29T10:12:04Z) - DIONYSUS: A Pre-trained Model for Low-Resource Dialogue Summarization [127.714919036388]
DIONYSUS is a pre-trained encoder-decoder model for summarizing dialogues in any new domain.
Our experiments show that DIONYSUS outperforms existing methods on six datasets.
arXiv Detail & Related papers (2022-12-20T06:21:21Z) - Manual-Guided Dialogue for Flexible Conversational Agents [84.46598430403886]
How to build and use dialogue data efficiently, and how to deploy models in different domains at scale can be critical issues in building a task-oriented dialogue system.
We propose a novel manual-guided dialogue scheme, where the agent learns the tasks from both dialogue and manuals.
Our proposed scheme reduces the dependence of dialogue models on fine-grained domain ontology, and makes them more flexible to adapt to various domains.
arXiv Detail & Related papers (2022-08-16T08:21:12Z) - DialogZoo: Large-Scale Dialog-Oriented Task Learning [52.18193690394549]
We aim to build a unified foundation model which can solve massive diverse dialogue tasks.
To achieve this goal, we first collect a large-scale well-labeled dialogue dataset from 73 publicly available datasets.
arXiv Detail & Related papers (2022-05-25T11:17:16Z) - Quick Starting Dialog Systems with Paraphrase Generation [0.0]
We propose a method to reduce the cost and effort of creating new conversational agents by artificially generating more data from existing examples.
Our proposed approach can kick-start a dialog system with little human effort, and brings its performance to a level satisfactory enough for allowing actual interactions with real end-users.
arXiv Detail & Related papers (2022-04-06T02:35:59Z) - Integrating Pre-trained Model into Rule-based Dialogue Management [32.90885176553305]
Rule-based dialogue management is still the most popular solution for industrial task-oriented dialogue systems.
Data-driven dialogue systems, usually with end-to-end structures, are popular in academic research.
We propose a method to leverage the strength of both rule-based and data-driven dialogue managers.
arXiv Detail & Related papers (2021-02-17T03:44:22Z) - Improving Dialogue Breakdown Detection with Semi-Supervised Learning [7.7914806980889875]
We investigate the use of semi-supervised learning methods to improve dialogue breakdown detection.
We demonstrate the effectiveness of these methods on the Dialogue Breakdown Detection Challenge (DBDC) English shared task.
arXiv Detail & Related papers (2020-10-30T23:04:56Z) - MinTL: Minimalist Transfer Learning for Task-Oriented Dialogue Systems [75.43457658815943]
We propose Minimalist Transfer Learning (MinTL) to simplify the system design process of task-oriented dialogue systems.
MinTL is a simple yet effective transfer learning framework, which allows us to plug-and-play pre-trained seq2seq models.
We instantiate our learning framework with two pre-trained backbones: T5 and BART, and evaluate them on MultiWOZ.
arXiv Detail & Related papers (2020-09-25T02:19:13Z) - Meta Dialogue Policy Learning [58.045067703675095]
We propose Deep Transferable Q-Network (DTQN) to utilize shareable low-level signals between domains.
We decompose the state and action representation space into feature subspaces corresponding to these low-level components.
In experiments, our model outperforms baseline models in terms of both success rate and dialogue efficiency.
arXiv Detail & Related papers (2020-06-03T23:53:06Z) - Multi-Agent Task-Oriented Dialog Policy Learning with Role-Aware Reward
Decomposition [64.06167416127386]
We propose Multi-Agent Dialog Policy Learning, which regards both the system and the user as the dialog agents.
Two agents interact with each other and are jointly learned simultaneously.
Results show that our method can successfully build a system policy and a user policy simultaneously.
arXiv Detail & Related papers (2020-04-08T04:51:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.