Injecting Salesperson's Dialogue Strategies in Large Language Models with Chain-of-Thought Reasoning
- URL: http://arxiv.org/abs/2404.18564v1
- Date: Mon, 29 Apr 2024 10:12:04 GMT
- Title: Injecting Salesperson's Dialogue Strategies in Large Language Models with Chain-of-Thought Reasoning
- Authors: Wen-Yu Chang, Yun-Nung Chen,
- Abstract summary: SalesBot simulates dialogues transitioning from chit-chat to task-oriented scenarios to train sales agents.
Initial data lacked smooth transitions and coherent long-turn dialogues, resulting in poor naturalness in sales-customer interactions.
We introduce a novel model called SalesAgent, trained on salesperson's interactions, using chain-of-thought (CoT) reasoning.
- Score: 23.919423630938226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research in dialogue systems and corpora has focused on two main categories: task-oriented (TOD) and open-domain (chit-chat) dialogues. TOD systems help users accomplish specific tasks, while open-domain systems aim to create engaging conversations. However, in real-world scenarios, user intents are often revealed during interactions. A recent study introduced SalesBot, which simulates dialogues transitioning from chit-chat to task-oriented scenarios to train sales agents. Unfortunately, the initial data lacked smooth transitions and coherent long-turn dialogues, resulting in poor naturalness in sales-customer interactions. To address these issues, this paper presents SalesBot 2.0, an improved dataset. It leverages commonsense knowledge from large language models (LLMs) through strategic prompting. Additionally, we introduce a novel model called SalesAgent, trained on salesperson's interactions, using chain-of-thought (CoT) reasoning. This model excels in transitioning topics, understanding user intents, and selecting appropriate strategies. Experiments using diverse user simulations validate the effectiveness of our method in controlling dialogue strategies in LLMs. Furthermore, SalesBot 2.0 enhances coherence and reduces aggression, facilitating better model learning for sales-customer interactions.
Related papers
- Multi-User MultiWOZ: Task-Oriented Dialogues among Multiple Users [51.34484827552774]
We release the Multi-User MultiWOZ dataset: task-oriented dialogues among two users and one agent.
These dialogues reflect interesting dynamics of collaborative decision-making in task-oriented scenarios.
We propose a novel task of multi-user contextual query rewriting: to rewrite a task-oriented chat between two users as a concise task-oriented query.
arXiv Detail & Related papers (2023-10-31T14:12:07Z) - Salespeople vs SalesBot: Exploring the Role of Educational Value in
Conversational Recommender Systems [78.84530426424838]
Existing conversational recommender systems often overlook users' lack of background knowledge, focusing solely on gathering preferences.
We introduce SalesOps, a framework that facilitates the simulation and evaluation of such systems.
We build SalesBot and ShopperBot, a pair of LLM-powered agents that can simulate either side of the framework.
arXiv Detail & Related papers (2023-10-26T19:44:06Z) - SalesBot 2.0: A Human-Like Intent-Guided Chit-Chat Dataset [28.257630375747606]
This paper aims to build SalesBot 2.0, a revised version of the published data, by leveraging the commonsense knowledge of large language models (LLMs) through proper prompting.
The newly released large-scale dataset with detailed annotations exhibits smoother transitions between topics and is more human-like in terms of naturalness and consistency.
arXiv Detail & Related papers (2023-08-28T02:48:49Z) - Manual-Guided Dialogue for Flexible Conversational Agents [84.46598430403886]
How to build and use dialogue data efficiently, and how to deploy models in different domains at scale can be critical issues in building a task-oriented dialogue system.
We propose a novel manual-guided dialogue scheme, where the agent learns the tasks from both dialogue and manuals.
Our proposed scheme reduces the dependence of dialogue models on fine-grained domain ontology, and makes them more flexible to adapt to various domains.
arXiv Detail & Related papers (2022-08-16T08:21:12Z) - DialogVED: A Pre-trained Latent Variable Encoder-Decoder Model for
Dialog Response Generation [80.45816053153722]
DialogVED introduces continuous latent variables into the enhanced encoder-decoder pre-training framework to increase the relevance and diversity of responses.
We conduct experiments on PersonaChat, DailyDialog, and DSTC7-AVSD benchmarks for response generation.
arXiv Detail & Related papers (2022-04-27T16:18:15Z) - SalesBot: Transitioning from Chit-Chat to Task-Oriented Dialogues [22.89699254073016]
How smoothly transitioning from social chatting to task-oriented dialogues is important for triggering business opportunities.
This paper proposes a framework to automatically generate many dialogues without human involvement.
The released data has a great potential of guiding future research directions and commercial activities.
arXiv Detail & Related papers (2022-04-22T09:31:13Z) - Smoothing Dialogue States for Open Conversational Machine Reading [70.83783364292438]
We propose an effective gating strategy by smoothing the two dialogue states in only one decoder and bridge decision making and question generation.
Experiments on the OR-ShARC dataset show the effectiveness of our method, which achieves new state-of-the-art results.
arXiv Detail & Related papers (2021-08-28T08:04:28Z) - Transferable Dialogue Systems and User Simulators [17.106518400787156]
One of the difficulties in training dialogue systems is the lack of training data.
We explore the possibility of creating dialogue data through the interaction between a dialogue system and a user simulator.
We develop a modelling framework that can incorporate new dialogue scenarios through self-play between the two agents.
arXiv Detail & Related papers (2021-07-25T22:59:09Z) - Data-Efficient Methods for Dialogue Systems [4.061135251278187]
Conversational User Interface (CUI) has become ubiquitous in everyday life, in consumer-focused products like Siri and Alexa.
Deep learning underlies many recent breakthroughs in dialogue systems but requires very large amounts of training data, often annotated by experts.
In this thesis, we introduce a series of methods for training robust dialogue systems from minimal data.
arXiv Detail & Related papers (2020-12-05T02:51:09Z) - Improving Dialogue Breakdown Detection with Semi-Supervised Learning [7.7914806980889875]
We investigate the use of semi-supervised learning methods to improve dialogue breakdown detection.
We demonstrate the effectiveness of these methods on the Dialogue Breakdown Detection Challenge (DBDC) English shared task.
arXiv Detail & Related papers (2020-10-30T23:04:56Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
In this work, we unify nine human-human and multi-turn task-oriented dialogue datasets for language modeling.
To better model dialogue behavior during pre-training, we incorporate user and system tokens into the masked language modeling.
arXiv Detail & Related papers (2020-04-15T04:09:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.