Trade When Opportunity Comes: Price Movement Forecasting via Locality-Aware Attention and Iterative Refinement Labeling
- URL: http://arxiv.org/abs/2107.11972v4
- Date: Wed, 10 Jul 2024 07:05:51 GMT
- Title: Trade When Opportunity Comes: Price Movement Forecasting via Locality-Aware Attention and Iterative Refinement Labeling
- Authors: Liang Zeng, Lei Wang, Hui Niu, Ruchen Zhang, Ling Wang, Jian Li,
- Abstract summary: We propose LARA, a novel price movement forecasting framework with two main components.
LA-Attention extracts potentially profitable samples through masked attention scheme.
RA-Labeling refines the noisy labels of potentially profitable samples.
LARA significantly outperforms several machine learning based methods on the Qlib quantitative investment platform.
- Score: 11.430440350359993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Price movement forecasting, aimed at predicting financial asset trends based on current market information, has achieved promising advancements through machine learning (ML) methods. Most existing ML methods, however, struggle with the extremely low signal-to-noise ratio and stochastic nature of financial data, often mistaking noises for real trading signals without careful selection of potentially profitable samples. To address this issue, we propose LARA, a novel price movement forecasting framework with two main components: Locality-Aware Attention (LA-Attention) and Iterative Refinement Labeling (RA-Labeling). (1) LA-Attention, enhanced by metric learning techniques, automatically extracts the potentially profitable samples through masked attention scheme and task-specific distance metrics. (2) RA-Labeling further iteratively refines the noisy labels of potentially profitable samples, and combines the learned predictors robust to the unseen and noisy samples. In a set of experiments on three real-world financial markets: stocks, cryptocurrencies, and ETFs, LARA significantly outperforms several machine learning based methods on the Qlib quantitative investment platform. Extensive ablation studies confirm LARA's superior ability in capturing more reliable trading opportunities.
Related papers
- Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression.
Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset.
This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.
arXiv Detail & Related papers (2024-08-13T04:53:31Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - Semi-Supervised Class-Agnostic Motion Prediction with Pseudo Label
Regeneration and BEVMix [59.55173022987071]
We study the potential of semi-supervised learning for class-agnostic motion prediction.
Our framework adopts a consistency-based self-training paradigm, enabling the model to learn from unlabeled data.
Our method exhibits comparable performance to weakly and some fully supervised methods.
arXiv Detail & Related papers (2023-12-13T09:32:50Z) - Combining Deep Learning on Order Books with Reinforcement Learning for
Profitable Trading [0.0]
This work focuses on forecasting returns across multiple horizons using order flow and training three temporal-difference imbalance learning models for five financial instruments.
The results prove potential but require further minimal modifications for consistently profitable trading to fully handle retail trading costs, slippage, and spread fluctuation.
arXiv Detail & Related papers (2023-10-24T15:58:58Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - AlphaMLDigger: A Novel Machine Learning Solution to Explore Excess
Return on Investment [1.4502611532302039]
This paper proposes a two-phase AlphaMLDigger that effectively finds excessive returns in the highly fluctuated market.
In phase 1, a deep sequential NLP model is proposed to transfer blogs on Sina Microblog to market sentiment.
In phase 2, the predicted market sentiment is combined with social network indicator features and stock market history features to predict the stock movements.
arXiv Detail & Related papers (2022-06-22T13:37:58Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Denoised Labels for Financial Time-Series Data via Self-Supervised
Learning [5.743034166791607]
This work takes inspiration from image classification in trading and success in self-supervised learning.
We investigate the idea of applying computer vision techniques to financial time-series to reduce the noise exposure.
Our results show that our denoised labels improve the performances of the downstream learning algorithm.
arXiv Detail & Related papers (2021-12-19T12:54:20Z) - BERTifying the Hidden Markov Model for Multi-Source Weakly Supervised
Named Entity Recognition [57.2201011783393]
conditional hidden Markov model (CHMM)
CHMM predicts token-wise transition and emission probabilities from the BERT embeddings of the input tokens.
It fine-tunes a BERT-based NER model with the labels inferred by CHMM.
arXiv Detail & Related papers (2021-05-26T21:18:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.