Self-Supervised Graph Transformer for Deepfake Detection
- URL: http://arxiv.org/abs/2307.15019v1
- Date: Thu, 27 Jul 2023 17:22:41 GMT
- Title: Self-Supervised Graph Transformer for Deepfake Detection
- Authors: Aminollah Khormali, and Jiann-Shiun Yuan
- Abstract summary: Deepfake detection methods have shown promising results in recognizing forgeries within a given dataset.
Deepfake detection system must remain impartial to forgery types, appearance, and quality for guaranteed generalizable detection performance.
This study introduces a deepfake detection framework, leveraging a self-supervised pre-training model that delivers exceptional generalization ability.
- Score: 1.8133635752982105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deepfake detection methods have shown promising results in recognizing
forgeries within a given dataset, where training and testing take place on the
in-distribution dataset. However, their performance deteriorates significantly
when presented with unseen samples. As a result, a reliable deepfake detection
system must remain impartial to forgery types, appearance, and quality for
guaranteed generalizable detection performance. Despite various attempts to
enhance cross-dataset generalization, the problem remains challenging,
particularly when testing against common post-processing perturbations, such as
video compression or blur. Hence, this study introduces a deepfake detection
framework, leveraging a self-supervised pre-training model that delivers
exceptional generalization ability, withstanding common corruptions and
enabling feature explainability. The framework comprises three key components:
a feature extractor based on vision Transformer architecture that is
pre-trained via self-supervised contrastive learning methodology, a graph
convolution network coupled with a Transformer discriminator, and a graph
Transformer relevancy map that provides a better understanding of manipulated
regions and further explains the model's decision. To assess the effectiveness
of the proposed framework, several challenging experiments are conducted,
including in-data distribution performance, cross-dataset, cross-manipulation
generalization, and robustness against common post-production perturbations.
The results achieved demonstrate the remarkable effectiveness of the proposed
deepfake detection framework, surpassing the current state-of-the-art
approaches.
Related papers
- Counterfactual Explanation for Auto-Encoder Based Time-Series Anomaly Detection [0.3199881502576702]
Auto-Encoders exhibit inherent opaqueness in their decision-making processes, hindering their practical implementation at scale.
In this work, we employ a feature selector to select features and counterfactual explanations to give a context to the model output.
Our experimental findings illustrate that our proposed counterfactual approach can offer meaningful and valuable insights into the model decision-making process.
arXiv Detail & Related papers (2025-01-03T19:30:11Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Leveraging Mixture of Experts for Improved Speech Deepfake Detection [53.69740463004446]
Speech deepfakes pose a significant threat to personal security and content authenticity.
We introduce a novel approach for enhancing speech deepfake detection performance using a Mixture of Experts architecture.
arXiv Detail & Related papers (2024-09-24T13:24:03Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Few-Shot Anomaly Detection with Adversarial Loss for Robust Feature
Representations [8.915958745269442]
Anomaly detection is a critical and challenging task that aims to identify data points deviating from normal patterns and distributions within a dataset.
Various methods have been proposed using a one-class-one-model approach, but these techniques often face practical problems such as memory inefficiency and the requirement of sufficient data for training.
We propose a few-shot anomaly detection method that integrates adversarial training loss to obtain more robust and generalized feature representations.
arXiv Detail & Related papers (2023-12-04T09:45:02Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - Automated Deception Detection from Videos: Using End-to-End Learning
Based High-Level Features and Classification Approaches [0.0]
We propose a multimodal approach combining deep learning and discriminative models for deception detection.
We employ convolutional end-to-end learning to analyze gaze, head pose, and facial expressions.
Our approach is evaluated on five datasets, including a new Rolling-Dice Experiment motivated by economic factors.
arXiv Detail & Related papers (2023-07-13T08:45:15Z) - SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for
Exposing Deepfakes [7.553507857251396]
We propose a novel deepfake detector, called SeeABLE, that formalizes the detection problem as a (one-class) out-of-distribution detection task.
SeeABLE pushes perturbed faces towards predefined prototypes using a novel regression-based bounded contrastive loss.
We show that our model convincingly outperforms competing state-of-the-art detectors, while exhibiting highly encouraging generalization capabilities.
arXiv Detail & Related papers (2022-11-21T09:38:30Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - A New Approach to Improve Learning-based Deepfake Detection in Realistic
Conditions [13.334500258498798]
Deep convolutional neural networks have achieved exceptional results on multiple detection and recognition tasks.
The impact of conventional distortions and processing operations found in imaging such as compression, noise, and enhancement are not sufficiently studied.
This paper proposes a more effective data augmentation scheme based on real-world image degradation process.
arXiv Detail & Related papers (2022-03-22T15:16:54Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.