Early Diagnosis of Lung Cancer Using Computer Aided Detection via Lung
Segmentation Approach
- URL: http://arxiv.org/abs/2107.12205v1
- Date: Fri, 23 Jul 2021 05:46:06 GMT
- Title: Early Diagnosis of Lung Cancer Using Computer Aided Detection via Lung
Segmentation Approach
- Authors: Abhir Bhandary, Ananth Prabhu G, Mustafa Basthikodi, Chaitra K M
- Abstract summary: American Cancer Society estimates about 27% of the deaths because of cancer.
In the early phase of its evolution, lung cancer does not cause any symptoms usually.
Many of the patients have been diagnosed in a developed phase where symptoms become more prominent, that results in poor curative treatment and high mortality rate.
- Score: 0.1749935196721634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lung cancer begins in the lungs and leading to the reason of cancer demise
amid population in the creation. According to the American Cancer Society,
which estimates about 27% of the deaths because of cancer. In the early phase
of its evolution, lung cancer does not cause any symptoms usually. Many of the
patients have been diagnosed in a developed phase where symptoms become more
prominent, that results in poor curative treatment and high mortality rate.
Computer Aided Detection systems are used to achieve greater accuracies for the
lung cancer diagnosis. In this research exertion, we proposed a novel
methodology for lung Segmentation on the basis of Fuzzy C-Means Clustering,
Adaptive Thresholding, and Segmentation of Active Contour Model. The
experimental results are analysed and presented.
Related papers
- Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Application analysis of ai technology combined with spiral CT scanning
in early lung cancer screening [15.6839495538166]
The overall 5-year survival rate of lung cancer patients is still lower than 20% and is staged.
In recent years, artificial intelligence technology has gradually begun to be applied in oncology.
This study applied the combined method in early lung cancer screening, aiming to find a safe and efficient screening mode.
arXiv Detail & Related papers (2024-01-26T07:58:09Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCa is a multi-institutional open-source benchmark dataset of volumetric CDI$s$ imaging data of breast cancer patients.
Cancer-Net BCa is publicly available as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer.
arXiv Detail & Related papers (2023-04-12T05:41:44Z) - Artificial intelligence based prediction on lung cancer risk factors
using deep learning [0.0]
Capturing and defining symptoms at an early stage is one of the most difficult phases for patients.
We developed a model that can detect lung cancer with a remarkably high level of accuracy using the deep learning approach.
We found that our model achieved an accuracy of 94% and a minimum loss of 0.1%.
arXiv Detail & Related papers (2023-04-11T08:57:15Z) - SGDA: Towards 3D Universal Pulmonary Nodule Detection via Slice Grouped
Domain Attention [47.44114201293201]
Lung cancer is the leading cause of cancer death worldwide.
Current pulmonary nodule detection methods are usually domain-specific.
We propose a slice grouped domain attention (SGDA) module to enhance the generalization capability of the pulmonary nodule detection networks.
arXiv Detail & Related papers (2023-03-07T03:17:49Z) - Deep Learning Approach for Early Stage Lung Cancer Detection [0.0]
The survival rate for lung cancer patients is very low compared to other cancer patients due to late diagnostics.
This paper proposed a deep-learning model for early lung cancer prediction and diagnosis from Computed Tomography (CT) scans.
arXiv Detail & Related papers (2023-02-05T18:50:12Z) - Classification of Histopathology Images of Lung Cancer Using
Convolutional Neural Network (CNN) [0.2578242050187029]
Cancer is the uncontrollable cell division of abnormal cells inside the human body, which can spread to other body organs.
It is one of the non-communicable diseases (NCDs) and NCDs accounts for 71% of total deaths worldwide.
Lung cancer is the second most diagnosed cancer after female breast cancer. Cancer survival rate of lung cancer is only 19%.
arXiv Detail & Related papers (2021-12-27T07:43:58Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - AI-Decision Support System Interface Using Cancer Related Data for Lung
Cancer Prognosis [0.0]
Until the beginning of 2021, lung cancer is known to be the most common cancer in the world.
The study was planned to create a web interface that works with machine learning algorithms to predict prognosis using lung cancer clinical and gene expression in the GDC data portal.
arXiv Detail & Related papers (2021-05-19T10:22:37Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
Pneumonia is the leading cause of death among young children and one of the top mortality causes worldwide.
Computer-aided diagnosis systems showed the potential for improving diagnostic accuracy.
We develop the computational approach for pneumonia regions detection based on single-shot detectors, squeeze-and-excitation deep convolution neural networks, augmentations and multi-task learning.
arXiv Detail & Related papers (2020-05-28T10:54:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.