Application analysis of ai technology combined with spiral CT scanning
in early lung cancer screening
- URL: http://arxiv.org/abs/2402.04267v1
- Date: Fri, 26 Jan 2024 07:58:09 GMT
- Title: Application analysis of ai technology combined with spiral CT scanning
in early lung cancer screening
- Authors: Shulin Li, Liqiang Yu, Bo Liu, Qunwei Lin, Jiaxin Huang
- Abstract summary: The overall 5-year survival rate of lung cancer patients is still lower than 20% and is staged.
In recent years, artificial intelligence technology has gradually begun to be applied in oncology.
This study applied the combined method in early lung cancer screening, aiming to find a safe and efficient screening mode.
- Score: 15.6839495538166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: At present, the incidence and fatality rate of lung cancer in China rank
first among all malignant tumors. Despite the continuous development and
improvement of China's medical level, the overall 5-year survival rate of lung
cancer patients is still lower than 20% and is staged. A number of studies have
confirmed that early diagnosis and treatment of early stage lung cancer is of
great significance to improve the prognosis of patients. In recent years,
artificial intelligence technology has gradually begun to be applied in
oncology. ai is used in cancer screening, clinical diagnosis, radiation therapy
(image acquisition, at-risk organ segmentation, image calibration and delivery)
and other aspects of rapid development. However, whether medical ai can be
socialized depends on the public's attitude and acceptance to a certain extent.
However, at present, there are few studies on the diagnosis of early lung
cancer by AI technology combined with SCT scanning. In view of this, this study
applied the combined method in early lung cancer screening, aiming to find a
safe and efficient screening mode and provide a reference for clinical
diagnosis and treatment.
Related papers
- Medical AI for Early Detection of Lung Cancer: A Survey [11.90341994990241]
Lung cancer remains one of the leading causes of morbidity and mortality worldwide.
Computer-aided diagnosis (CAD) systems have proven effective in detecting and classifying pulmonary nodules.
Deep learning algorithms have markedly improved the accuracy and efficiency of pulmonary nodule analysis.
arXiv Detail & Related papers (2024-10-18T17:45:42Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Combining low-dose CT-based radiomics and metabolomics for early lung
cancer screening support [32.586316762855944]
Lung cancer is often diagnosed in advanced stages, resulting in poorer survival rates for patients.
Early diagnosis can be facilitated through screening programs designed to detect lung tissue tumors when they are still small, typically around 3mm in size.
arXiv Detail & Related papers (2023-09-20T12:07:16Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCa is a multi-institutional open-source benchmark dataset of volumetric CDI$s$ imaging data of breast cancer patients.
Cancer-Net BCa is publicly available as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer.
arXiv Detail & Related papers (2023-04-12T05:41:44Z) - Deep Learning Approach for Early Stage Lung Cancer Detection [0.0]
The survival rate for lung cancer patients is very low compared to other cancer patients due to late diagnostics.
This paper proposed a deep-learning model for early lung cancer prediction and diagnosis from Computed Tomography (CT) scans.
arXiv Detail & Related papers (2023-02-05T18:50:12Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z) - Early Diagnosis of Lung Cancer Using Computer Aided Detection via Lung
Segmentation Approach [0.1749935196721634]
American Cancer Society estimates about 27% of the deaths because of cancer.
In the early phase of its evolution, lung cancer does not cause any symptoms usually.
Many of the patients have been diagnosed in a developed phase where symptoms become more prominent, that results in poor curative treatment and high mortality rate.
arXiv Detail & Related papers (2021-07-23T05:46:06Z) - 3D Neural Network for Lung Cancer Risk Prediction on CT Volumes [0.6810862244331126]
Lung cancer is the most common cause of cancer death in the United States.
Lung cancer CT screening has been shown to reduce mortality by up to 40% and is now included in US screening guidelines.
Despite the use of standards for radiological diagnosis, persistent inter-grader variability and incomplete characterization of comprehensive imaging findings remain as limitations of current methods.
In this report, we reproduce a state-of-the-art deep learning algorithm for lung cancer risk prediction.
arXiv Detail & Related papers (2020-07-25T10:01:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.