論文の概要: A Tale Of Two Long Tails
- arxiv url: http://arxiv.org/abs/2107.13098v1
- Date: Tue, 27 Jul 2021 22:49:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-30 00:27:51.541261
- Title: A Tale Of Two Long Tails
- Title(参考訳): 長い尾が2本ある物語
- Authors: Daniel D'souza, Zach Nussbaum, Chirag Agarwal, Sara Hooker
- Abstract要約: モデルが不確実である例を特定し、その不確実性の原因を特徴付ける。
追加情報が存在する場合の学習速度が,非典型例と雑音例とで異なるか否かを検討する。
以上の結果から,トレーニングの過程で適切に設計された介入は,異なる不確実性源の識別・識別に有効な方法であることが示唆された。
- 参考スコア(独自算出の注目度): 4.970364068620608
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As machine learning models are increasingly employed to assist human
decision-makers, it becomes critical to communicate the uncertainty associated
with these model predictions. However, the majority of work on uncertainty has
focused on traditional probabilistic or ranking approaches - where the model
assigns low probabilities or scores to uncertain examples. While this captures
what examples are challenging for the model, it does not capture the underlying
source of the uncertainty. In this work, we seek to identify examples the model
is uncertain about and characterize the source of said uncertainty. We explore
the benefits of designing a targeted intervention - targeted data augmentation
of the examples where the model is uncertain over the course of training. We
investigate whether the rate of learning in the presence of additional
information differs between atypical and noisy examples? Our results show that
this is indeed the case, suggesting that well-designed interventions over the
course of training can be an effective way to characterize and distinguish
between different sources of uncertainty.
- Abstract(参考訳): 機械学習モデルは、人間の意思決定を支援するためにますます採用されているため、これらのモデル予測に関連する不確実性を伝えることが重要になる。
しかしながら、不確実性に関する研究の大部分は、従来の確率的あるいはランク付けアプローチ(モデルが低い確率やスコアを不確実な例に割り当てる)に焦点を当てている。
これはモデルにとって困難である例をキャプチャするが、不確実性の原因を捉えない。
本研究では,モデルが不確実である事例を特定し,その不確実性の原因を特徴付ける。
トレーニングの過程でモデルが不確実な例を対象とするデータ拡張を,対象とする介入を設計するメリットについて検討する。
追加情報が存在する場合の学習速度が非典型例と雑音例とで異なるかを検討する。
以上の結果から,訓練過程における十分に設計された介入が,異なる不確実性源を特徴付け,識別するための効果的な方法であることが示唆された。
関連論文リスト
- An Ambiguity Measure for Recognizing the Unknowns in Deep Learning [0.0]
深層ニューラルネットワークの学習範囲から, 深部ニューラルネットワークの理解について検討する。
任意のモデルに対する入力のあいまいさを定量化する尺度を提案する。
論文 参考訳(メタデータ) (2023-12-11T02:57:12Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - A Data-Driven Measure of Relative Uncertainty for Misclassification
Detection [25.947610541430013]
誤分類検出のための観測者に対して,不確実性に関するデータ駆動測度を導入する。
ソフト予測の分布パターンを学習することにより,不確実性を測定することができる。
複数の画像分類タスクに対する経験的改善を示し、最先端の誤分類検出方法より優れていることを示す。
論文 参考訳(メタデータ) (2023-06-02T17:32:03Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
本稿では,異なるモデル選択基準の長所と短所を実験的に検討する。
選択戦略,候補推定器,比較に用いるデータの間には,複雑な相互作用があることを強調した。
論文 参考訳(メタデータ) (2023-02-06T16:55:37Z) - Cross-model Fairness: Empirical Study of Fairness and Ethics Under Model Multiplicity [10.144058870887061]
1つの予測器が等しく機能するモデルのグループからアドホックに選択された場合、個人は害を受ける可能性があると我々は主張する。
これらの不公平性は実生活で容易に発見でき、技術的手段だけで緩和することは困難である可能性が示唆された。
論文 参考訳(メタデータ) (2022-03-14T14:33:39Z) - Uncertainty estimation under model misspecification in neural network
regression [3.2622301272834524]
モデル選択が不確実性評価に与える影響について検討する。
モデルミスセグメンテーションでは,アレータリック不確実性は適切に捉えられていない。
論文 参考訳(メタデータ) (2021-11-23T10:18:41Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
最先端自然言語処理(NLP)モデルは、意図したタスクをターゲットとする機能ではなく、データセットのバイアスや表面形状の相関をモデル化することを学ぶことが多い。
これまでの研究は、バイアスに関する知識が利用できる場合に、これらの問題を回避するための効果的な方法を示してきた。
本稿では,これらの問題点を無視する学習モデルについて述べる。
論文 参考訳(メタデータ) (2020-12-02T16:10:54Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Identifying Causal-Effect Inference Failure with Uncertainty-Aware
Models [41.53326337725239]
本稿では,不確実性推定を最先端のニューラルネットワーク手法のクラスに統合する実践的アプローチを提案する。
提案手法は,高次元データに共通する「非オーバーラップ」の状況に優雅に対処できることを示す。
正確なモデリングの不確実性は、過度に自信を持ち、潜在的に有害なレコメンデーションを与えるのを防ぐことができる。
論文 参考訳(メタデータ) (2020-07-01T00:37:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。