Social media emotion macroscopes reflect emotional experiences in
society at large
- URL: http://arxiv.org/abs/2107.13236v1
- Date: Wed, 28 Jul 2021 09:40:42 GMT
- Title: Social media emotion macroscopes reflect emotional experiences in
society at large
- Authors: David Garcia, Max Pellert, Jana Lasser, Hannah Metzler
- Abstract summary: Social media generate data on human behaviour at large scales and over long periods of time.
Recent research has shown weak correlations between social media emotions and affect questionnaires at the individual level.
No research has tested the validity of social media emotion macroscopes to track the temporal evolution of emotions at the level of a whole society.
- Score: 0.12656629989060433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media generate data on human behaviour at large scales and over long
periods of time, posing a complementary approach to traditional methods in the
social sciences. Millions of texts from social media can be processed with
computational methods to study emotions over time and across regions. However,
recent research has shown weak correlations between social media emotions and
affect questionnaires at the individual level and between static regional
aggregates of social media emotion and subjective well-being at the population
level, questioning the validity of social media data to study emotions. Yet, to
date, no research has tested the validity of social media emotion macroscopes
to track the temporal evolution of emotions at the level of a whole society.
Here we present a pre-registered prediction study that shows how
gender-rescaled time series of Twitter emotional expression at the national
level substantially correlate with aggregates of self-reported emotions in a
weekly representative survey in the United Kingdom. A follow-up exploratory
analysis shows a high prevalence of third-person references in
emotionally-charged tweets, indicating that social media data provide a way of
social sensing the emotions of others rather than just the emotional
experiences of users. These results show that, despite the issues that social
media have in terms of representativeness and algorithmic confounding, the
combination of advanced text analysis methods with user demographic information
in social media emotion macroscopes can provide measures that are informative
of the general population beyond social media users.
Related papers
- Measuring Non-Typical Emotions for Mental Health: A Survey of Computational Approaches [57.486040830365646]
Stress and depression impact the engagement in daily tasks, highlighting the need to understand their interplay.
This survey is the first to simultaneously explore computational methods for analyzing stress, depression, and engagement.
arXiv Detail & Related papers (2024-03-09T11:16:09Z) - Emotion fusion for mental illness detection from social media: A survey [16.410940528107115]
Mental illnesses are one of the most prevalent public health problems worldwide.
There has been a growing research interest in the early detection of mental illness by analysing user-generated posts on social media.
According to the correlation between emotions and mental illness, leveraging and fusing emotion information has developed into a valuable research topic.
arXiv Detail & Related papers (2023-04-19T08:28:34Z) - Machine Learning Algorithms for Depression Detection and Their
Comparison [0.0]
We have designed an automatic depression detection of online social media users by analyzing their social media behavior.
The underlying classifier is made using state-of-art technology in emotional artificial intelligence.
arXiv Detail & Related papers (2023-01-09T09:34:38Z) - Self-supervised Hypergraph Representation Learning for Sociological
Analysis [52.514283292498405]
We propose a fundamental methodology to support the further fusion of data mining techniques and sociological behavioral criteria.
First, we propose an effective hypergraph awareness and a fast line graph construction framework.
Second, we propose a novel hypergraph-based neural network to learn social influence flowing from users to users.
arXiv Detail & Related papers (2022-12-22T01:20:29Z) - BERT-Deep CNN: State-of-the-Art for Sentiment Analysis of COVID-19
Tweets [0.7850663096185592]
The COVID-19 pandemic is one of the current events being discussed on social media platforms.
In a pandemic situation, analyzing social media texts to uncover sentimental trends can be very helpful.
We intend to study society's perception of the COVID-19 pandemic through social media using state-of-the-art BERT and Deep CNN models.
arXiv Detail & Related papers (2022-11-04T14:35:56Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Validating daily social media macroscopes of emotions [0.12656629989060433]
We run a large-scale survey at an online newspaper to gather daily self-reports of affective states from its users.
We compare these with aggregated results of sentiment analysis of user discussions on the same online platform.
For both platforms, we find strong correlations between text analysis results and levels of self-reported emotions.
arXiv Detail & Related papers (2021-08-17T14:28:56Z) - Two-Faced Humans on Twitter and Facebook: Harvesting Social Multimedia
for Human Personality Profiling [74.83957286553924]
We infer the Myers-Briggs Personality Type indicators by applying a novel multi-view fusion framework, called "PERS"
Our experimental results demonstrate the PERS's ability to learn from multi-view data for personality profiling by efficiently leveraging on the significantly different data arriving from diverse social multimedia sources.
arXiv Detail & Related papers (2021-06-20T10:48:49Z) - Can You be More Social? Injecting Politeness and Positivity into
Task-Oriented Conversational Agents [60.27066549589362]
Social language used by human agents is associated with greater users' responsiveness and task completion.
The model uses a sequence-to-sequence deep learning architecture, extended with a social language understanding element.
Evaluation in terms of content preservation and social language level using both human judgment and automatic linguistic measures shows that the model can generate responses that enable agents to address users' issues in a more socially appropriate way.
arXiv Detail & Related papers (2020-12-29T08:22:48Z) - Over a Decade of Social Opinion Mining [1.0152838128195467]
This systematic review focuses on the evolving research area of Social Opinion Mining.
Natural language can be understood in terms of the different opinion dimensions, as expressed by humans.
Future research directions are presented, whereas further research and development has the potential of leaving a wider academic and societal impact.
arXiv Detail & Related papers (2020-12-05T17:59:59Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
We introduce an operational definition of echo chambers and perform a massive comparative analysis on 1B pieces of contents produced by 1M users on four social media platforms.
We infer the leaning of users about controversial topics and reconstruct their interaction networks by analyzing different features.
We find support for the hypothesis that platforms implementing news feed algorithms like Facebook may elicit the emergence of echo-chambers.
arXiv Detail & Related papers (2020-04-20T20:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.