Emotion fusion for mental illness detection from social media: A survey
- URL: http://arxiv.org/abs/2304.09493v1
- Date: Wed, 19 Apr 2023 08:28:34 GMT
- Title: Emotion fusion for mental illness detection from social media: A survey
- Authors: Tianlin Zhang and Kailai Yang and Shaoxiong Ji and Sophia Ananiadou
- Abstract summary: Mental illnesses are one of the most prevalent public health problems worldwide.
There has been a growing research interest in the early detection of mental illness by analysing user-generated posts on social media.
According to the correlation between emotions and mental illness, leveraging and fusing emotion information has developed into a valuable research topic.
- Score: 16.410940528107115
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Mental illnesses are one of the most prevalent public health problems
worldwide, which negatively influence people's lives and society's health. With
the increasing popularity of social media, there has been a growing research
interest in the early detection of mental illness by analysing user-generated
posts on social media. According to the correlation between emotions and mental
illness, leveraging and fusing emotion information has developed into a
valuable research topic. In this article, we provide a comprehensive survey of
approaches to mental illness detection in social media that incorporate emotion
fusion. We begin by reviewing different fusion strategies, along with their
advantages and disadvantages. Subsequently, we discuss the major challenges
faced by researchers working in this area, including issues surrounding the
availability and quality of datasets, the performance of algorithms and
interpretability. We additionally suggest some potential directions for future
research.
Related papers
- Measuring Non-Typical Emotions for Mental Health: A Survey of Computational Approaches [57.486040830365646]
Stress and depression impact the engagement in daily tasks, highlighting the need to understand their interplay.
This survey is the first to simultaneously explore computational methods for analyzing stress, depression, and engagement.
arXiv Detail & Related papers (2024-03-09T11:16:09Z) - LOST: A Mental Health Dataset of Low Self-esteem in Reddit Posts [4.6071451559137175]
Low self-esteem and interpersonal needs have a major impact on depression and suicide attempts.
Individuals seek social connectedness on social media to boost and alleviate their loneliness.
We introduce a psychology-grounded and expertly annotated dataset, LoST: Low Self esTeem, to study and detect low self-esteem on Reddit.
arXiv Detail & Related papers (2023-06-08T23:52:35Z) - Combating Health Misinformation in Social Media: Characterization,
Detection, Intervention, and Open Issues [24.428582199602822]
The rise of various social media platforms also enables the proliferation of online misinformation.
Health misinformation in social media has become an emerging research direction that attracts increasing attention from researchers of different disciplines.
arXiv Detail & Related papers (2022-11-10T01:52:12Z) - Aggression and "hate speech" in communication of media users: analysis
of control capabilities [50.591267188664666]
Authors studied the possibilities of mutual influence of users in new media.
They found a high level of aggression and hate speech when discussing an urgent social problem - measures for COVID-19 fighting.
Results can be useful for developing media content in a modern digital environment.
arXiv Detail & Related papers (2022-08-25T15:53:32Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
According to the World health organization (WHO), approximately 450 million people are affected.
Mental illnesses, such as depression, anxiety, bipolar disorder, ADHD, and PTSD.
This study analyzes unstructured user data on Reddit platform and classifies five common mental illnesses: depression, anxiety, bipolar disorder, ADHD, and PTSD.
arXiv Detail & Related papers (2022-07-03T11:33:52Z) - Adherence to Misinformation on Social Media Through Socio-Cognitive and
Group-Based Processes [79.79659145328856]
We argue that when misinformation proliferates, this happens because the social media environment enables adherence to misinformation.
We make the case that polarization and misinformation adherence are closely tied.
arXiv Detail & Related papers (2022-06-30T12:34:24Z) - Social Behavior and Mental Health: A Snapshot Survey under COVID-19
Pandemic [6.5721468981020665]
COVID-19 pandemic has changed the way we live, study, socialize and recreate.
There are growing researches that leverage online social media analysis to detect and assess user's mental status.
arXiv Detail & Related papers (2021-05-17T21:08:03Z) - Intelligent interactive technologies for mental health and well-being [70.1586005070678]
The paper critically analyzes existing solutions with the outlooks for their future.
In particular, we:.
give an overview of the technology for mental health,.
critically analyze the technology against the proposed criteria, and.
provide the design outlooks for these technologies.
arXiv Detail & Related papers (2021-05-11T19:04:21Z) - Detection and Classification of mental illnesses on social media using
RoBERTa [0.3753841394482697]
In this work, we detect and classify five prominent kinds of mental illnesses: depression, anxiety, bipolar disorder, ADHD and PTSD.
We believe that our work is the first multi-class model that uses a Transformer-based architecture such as RoBERTa to analyze people's emotions and psychology.
arXiv Detail & Related papers (2020-11-23T05:54:46Z) - Suicidal Ideation and Mental Disorder Detection with Attentive Relation
Networks [43.2802002858859]
This paper enhances text representation with lexicon-based sentiment scores and latent topics.
It proposes using relation networks to detect suicidal ideation and mental disorders with related risk indicators.
arXiv Detail & Related papers (2020-04-16T11:18:55Z) - Mining social media data for biomedical signals and health-related
behavior [0.0]
Social media data has been increasingly used to study biomedical and health-related phenomena.
We review recent work in mining social media for biomedical, epidemiological, and social phenomena information.
We discuss a variety of innovative uses of social media data for health-related applications and important limitations in social media data access and use.
arXiv Detail & Related papers (2020-01-28T12:08:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.