The Large $N$ Limit of icMERA and Holography
- URL: http://arxiv.org/abs/2107.13248v3
- Date: Wed, 6 Apr 2022 08:30:20 GMT
- Title: The Large $N$ Limit of icMERA and Holography
- Authors: Jose J. Fernandez-Melgarejo, Javier Molina-Vilaplana
- Abstract summary: We compute the entanglement entropy in continuous icMERA tensor networks for large $N$ models at strong coupling.
Our results constitute the first tensor network calculations at large $N$ and strong coupling simultaneously.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we compute the entanglement entropy in continuous icMERA tensor
networks for large $N$ models at strong coupling. Our results show that the
$1/N$ quantum corrections to the Fisher information metric (interpreted as a
local bond dimension of the tensor network) in an icMERA circuit, are related
to quantum corrections to the minimal area surface in the Ryu-Takayanagi
formula. Upon picking two different non-Gaussian entanglers to build the icMERA
circuit, the results for the entanglement entropy only differ at subleading
orders in $1/G_N$, i.e, at the structure of the quantum corrections in the
bulk. The fact that the large $N$ part of the entropy can be always related to
the leading area term of the holographic calculation is very suggestive. These
results, constitute the first tensor network calculations at large $N$ and
strong coupling simultaneously, pushing the field of tensor network
descriptions of the emergence of dual spacetime geometries from the structure
of entanglement in quantum field theory.
Related papers
- From $SU(2)$ holonomies to holographic duality via tensor networks [0.0]
We construct a tensor network representation of the spin network states, which correspond to $SU(2)$ gauge-invariant discrete field theories.
The spin network states play a central role in the Loop Quantum Gravity (LQG) approach to the Planck scale physics.
arXiv Detail & Related papers (2024-10-24T14:59:35Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
Quantum tomography has become an indispensable tool in order to compute the density matrix $rho$ of quantum systems in Physics.
We present the theoretical framework for reconstructing the helicity quantum initial state of a general scattering process.
arXiv Detail & Related papers (2023-10-16T21:23:42Z) - Quantum and classical spin network algorithms for $q$-deformed
Kogut-Susskind gauge theories [0.0]
We introduce $q$-deformed Kogut-Susskind lattice gauge theories, obtained by deforming the defining symmetry algebra to a quantum group.
Our proposal simultaneously provides a controlled regularization of the infinite-dimensional local Hilbert space while preserving essential symmetry-related properties.
Our work gives a new perspective for the application of tensor network methods to high-energy physics.
arXiv Detail & Related papers (2023-04-05T15:49:20Z) - Towards a Quantum Simulation of Nonlinear Sigma Models with a
Topological Term [0.0]
We show that the quantum theory is massless in the strong-coupling regime.
We also highlight the limitations of current quantum algorithms, designed for noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2022-10-07T16:35:03Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - Simulating Large PEPs Tensor Networks on Small Quantum Devices [0.0]
We map low-bond-dimension PEPs tensor networks to quantum circuits.
We employ this approach to calculate the values of a long-range loop observable in the topological Wen plaquette model.
Our results serve as a proof-of-concept for simulating large two-dimensional quantum systems on small quantum devices.
arXiv Detail & Related papers (2021-10-01T16:19:06Z) - The edge of chaos: quantum field theory and deep neural networks [0.0]
We explicitly construct the quantum field theory corresponding to a general class of deep neural networks.
We compute the loop corrections to the correlation function in a perturbative expansion in the ratio of depth $T$ to width $N$.
Our analysis provides a first-principles approach to the rapidly emerging NN-QFT correspondence, and opens several interesting avenues to the study of criticality in deep neural networks.
arXiv Detail & Related papers (2021-09-27T18:00:00Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.