A Reflection on Learning from Data: Epistemology Issues and Limitations
- URL: http://arxiv.org/abs/2107.13270v1
- Date: Wed, 28 Jul 2021 11:05:34 GMT
- Title: A Reflection on Learning from Data: Epistemology Issues and Limitations
- Authors: Ahmad Hammoudeh, Sara Tedmori and Nadim Obeid
- Abstract summary: This paper reflects on some issues and some limitations of the knowledge discovered in data.
The paper sheds some light on the shortcomings of using generic mathematical theories to describe the process.
It further highlights the need for theories specialized in learning from data.
- Score: 1.8047694351309205
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although learning from data is effective and has achieved significant
milestones, it has many challenges and limitations. Learning from data starts
from observations and then proceeds to broader generalizations. This framework
is controversial in science, yet it has achieved remarkable engineering
successes. This paper reflects on some epistemological issues and some of the
limitations of the knowledge discovered in data. The document discusses the
common perception that getting more data is the key to achieving better machine
learning models from theoretical and practical perspectives. The paper sheds
some light on the shortcomings of using generic mathematical theories to
describe the process. It further highlights the need for theories specialized
in learning from data. While more data leverages the performance of machine
learning models in general, the relation in practice is shown to be logarithmic
at its best; After a specific limit, more data stabilize or degrade the machine
learning models. Recent work in reinforcement learning showed that the trend is
shifting away from data-oriented approaches and relying more on algorithms. The
paper concludes that learning from data is hindered by many limitations. Hence
an approach that has an intensional orientation is needed.
Related papers
- How to unlearn a learned Machine Learning model ? [0.0]
I will present an elegant algorithm for unlearning a machine learning model and visualize its abilities.
I will elucidate the underlying mathematical theory and establish specific metrics to evaluate both the unlearned model's performance on desired data and its level of ignorance regarding unwanted data.
arXiv Detail & Related papers (2024-10-13T17:38:09Z) - Introducing CausalBench: A Flexible Benchmark Framework for Causal Analysis and Machine Learning [10.686245134005047]
Causal learning aims to go far beyond conventional machine learning, yet several major challenges remain.
We introduce em CausalBench, a transparent, fair, and easy-to-use evaluation platform.
arXiv Detail & Related papers (2024-09-12T22:45:10Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Breaking the Curse of Dimensionality in Deep Neural Networks by Learning
Invariant Representations [1.9580473532948401]
This thesis explores the theoretical foundations of deep learning by studying the relationship between the architecture of these models and the inherent structures found within the data they process.
We ask What drives the efficacy of deep learning algorithms and allows them to beat the so-called curse of dimensionality.
Our methodology takes an empirical approach to deep learning, combining experimental studies with physics-inspired toy models.
arXiv Detail & Related papers (2023-10-24T19:50:41Z) - On Inductive Biases for Machine Learning in Data Constrained Settings [0.0]
This thesis explores a different answer to the problem of learning expressive models in data constrained settings.
Instead of relying on big datasets to learn neural networks, we will replace some modules by known functions reflecting the structure of the data.
Our approach falls under the hood of "inductive biases", which can be defined as hypothesis on the data at hand restricting the space of models to explore.
arXiv Detail & Related papers (2023-02-21T14:22:01Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Beyond spectral gap (extended): The role of the topology in
decentralized learning [58.48291921602417]
In data-parallel optimization of machine learning models, workers collaborate to improve their estimates of the model.
Current theory does not explain that collaboration enables larger learning rates than training alone.
This paper aims to paint an accurate picture of sparsely-connected distributed optimization.
arXiv Detail & Related papers (2023-01-05T16:53:38Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
Learning on small data that approximates the generalization ability of big data is one of the ultimate purposes of AI.
This survey follows the active sampling theory under a PAC framework to analyze the generalization error and label complexity of learning on small data.
Multiple data applications that may benefit from efficient small data representation are surveyed.
arXiv Detail & Related papers (2022-07-29T02:34:19Z) - Beyond spectral gap: The role of the topology in decentralized learning [58.48291921602417]
In data-parallel optimization of machine learning models, workers collaborate to improve their estimates of the model.
This paper aims to paint an accurate picture of sparsely-connected distributed optimization when workers share the same data distribution.
Our theory matches empirical observations in deep learning, and accurately describes the relative merits of different graph topologies.
arXiv Detail & Related papers (2022-06-07T08:19:06Z) - Learning from Few Examples: A Summary of Approaches to Few-Shot Learning [3.6930948691311016]
Few-Shot Learning refers to the problem of learning the underlying pattern in the data just from a few training samples.
Deep learning solutions suffer from data hunger and extensively high computation time and resources.
Few-shot learning that could drastically reduce the turnaround time of building machine learning applications emerges as a low-cost solution.
arXiv Detail & Related papers (2022-03-07T23:15:21Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.