How to unlearn a learned Machine Learning model ?
- URL: http://arxiv.org/abs/2410.09935v1
- Date: Sun, 13 Oct 2024 17:38:09 GMT
- Title: How to unlearn a learned Machine Learning model ?
- Authors: Seifeddine Achour,
- Abstract summary: I will present an elegant algorithm for unlearning a machine learning model and visualize its abilities.
I will elucidate the underlying mathematical theory and establish specific metrics to evaluate both the unlearned model's performance on desired data and its level of ignorance regarding unwanted data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In contemporary times, machine learning (ML) has sparked a remarkable revolution across numerous domains, surpassing even the loftiest of human expectations. However, despite the astounding progress made by ML, the need to regulate its outputs and capabilities has become imperative. A viable approach to address this concern is by exerting control over the data used for its training, more precisely, by unlearning the model from undesired data. In this article, I will present an elegant algorithm for unlearning a machine learning model and visualize its abilities. Additionally, I will elucidate the underlying mathematical theory and establish specific metrics to evaluate both the unlearned model's performance on desired data and its level of ignorance regarding unwanted data.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Robust Machine Learning by Transforming and Augmenting Imperfect
Training Data [6.928276018602774]
This thesis explores several data sensitivities of modern machine learning.
We first discuss how to prevent ML from codifying prior human discrimination measured in the training data.
We then discuss the problem of learning from data containing spurious features, which provide predictive fidelity during training but are unreliable upon deployment.
arXiv Detail & Related papers (2023-12-19T20:49:28Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - AI Model Disgorgement: Methods and Choices [127.54319351058167]
We introduce a taxonomy of possible disgorgement methods that are applicable to modern machine learning systems.
We investigate the meaning of "removing the effects" of data in the trained model in a way that does not require retraining from scratch.
arXiv Detail & Related papers (2023-04-07T08:50:18Z) - A Survey of Machine Unlearning [56.017968863854186]
Recent regulations now require that, on request, private information about a user must be removed from computer systems.
ML models often remember' the old data.
Recent works on machine unlearning have not been able to completely solve the problem.
arXiv Detail & Related papers (2022-09-06T08:51:53Z) - Learnability of Learning Performance and Its Application to Data
Valuation [11.78594243870616]
In most machine learning (ML) tasks, evaluating learning performance on a given dataset requires intensive computation.
The ability to efficiently estimate learning performance may benefit a wide spectrum of applications, such as active learning, data quality management, and data valuation.
Recent empirical studies show that for many common ML models, one can accurately learn a parametric model that predicts learning performance for any given input datasets using a small amount of samples.
arXiv Detail & Related papers (2021-07-13T18:56:04Z) - Certifiable Machine Unlearning for Linear Models [1.484852576248587]
Machine unlearning is the task of updating machine learning (ML) models after a subset of the training data they were trained on is deleted.
We present an experimental study of the three state-of-the-art approximate unlearning methods for linear models.
arXiv Detail & Related papers (2021-06-29T05:05:58Z) - Towards Model-informed Precision Dosing with Expert-in-the-loop Machine
Learning [0.0]
We consider a ML framework that may accelerate model learning and improve its interpretability by incorporating human experts into the model learning loop.
We propose a novel human-in-the-loop ML framework aimed at dealing with learning problems that the cost of data annotation is high.
With an application to precision dosing, our experimental results show that the approach can learn interpretable rules from data and may potentially lower experts' workload.
arXiv Detail & Related papers (2021-06-28T03:45:09Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.