論文の概要: Doing Great at Estimating CATE? On the Neglected Assumptions in
Benchmark Comparisons of Treatment Effect Estimators
- arxiv url: http://arxiv.org/abs/2107.13346v1
- Date: Wed, 28 Jul 2021 13:21:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-29 13:49:12.992923
- Title: Doing Great at Estimating CATE? On the Neglected Assumptions in
Benchmark Comparisons of Treatment Effect Estimators
- Title(参考訳): CATEの推定は素晴らしいか?
治療効果推定器のベンチマーク比較における無視推定について
- Authors: Alicia Curth and Mihaela van der Schaar
- Abstract要約: もっとも単純な設定であっても、無知性仮定に基づく推定は誤解を招く可能性があることを示す。
異種処理効果評価のための機械学習ベンチマークデータセットを2つ検討した。
ベンチマークデータセットの固有の特性が、他のものよりもいくつかのアルゴリズムを好んでいる点を強調します。
- 参考スコア(独自算出の注目度): 91.3755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The machine learning toolbox for estimation of heterogeneous treatment
effects from observational data is expanding rapidly, yet many of its
algorithms have been evaluated only on a very limited set of semi-synthetic
benchmark datasets. In this paper, we show that even in arguably the simplest
setting -- estimation under ignorability assumptions -- the results of such
empirical evaluations can be misleading if (i) the assumptions underlying the
data-generating mechanisms in benchmark datasets and (ii) their interplay with
baseline algorithms are inadequately discussed. We consider two popular machine
learning benchmark datasets for evaluation of heterogeneous treatment effect
estimators -- the IHDP and ACIC2016 datasets -- in detail. We identify problems
with their current use and highlight that the inherent characteristics of the
benchmark datasets favor some algorithms over others -- a fact that is rarely
acknowledged but of immense relevance for interpretation of empirical results.
We close by discussing implications and possible next steps.
- Abstract(参考訳): 観測データから異種処理効果を推定する機械学習ツールボックスは急速に拡大しているが、そのアルゴリズムの多くは、非常に限られた半合成ベンチマークデータセットでのみ評価されている。
本稿では, ベンチマークデータセットにおけるデータ生成機構の前提となる仮定と, ベースラインアルゴリズムとの相互作用が不十分である場合, このような経験的評価の結果が, 最も単純な設定 -- 無知性仮定に基づく推定 -- を誤解させる可能性があることを示す。
IHDPとACIC2016のデータセットである異種処理効果推定器を詳細に評価するために、一般的な機械学習ベンチマークデータセットを2つ検討する。
私たちは、現在の使用に関する問題を特定し、ベンチマークデータセットの固有の特性が他のアルゴリズムよりも好まれていることを強調します。
我々はその意味と次のステップについて論じる。
関連論文リスト
- Targeted Machine Learning for Average Causal Effect Estimation Using the
Front-Door Functional [3.0232957374216953]
結果に対する治療の平均因果効果(ACE)を評価することは、しばしば観察研究における要因の相違によって引き起こされる課題を克服することを伴う。
本稿では,目標最小損失推定理論に基づいて,正面基準の新たな推定手法を提案する。
本研究では,早期学業成績が今後の年収に与える影響を明らかにするために,これらの推定装置の適用性を示す。
論文 参考訳(メタデータ) (2023-12-15T22:04:53Z) - Counterfactual Data Augmentation with Contrastive Learning [27.28511396131235]
本稿では,選択したサブセットに対して,結果に反する結果をもたらすモデルに依存しないデータ拡張手法を提案する。
我々は、比較学習を用いて表現空間と類似度尺度を学習し、学習された類似度尺度で同定された個人に近い学習空間において、同様の潜在的な結果が得られるようにした。
この性質は、代替治療群から近接した近縁者に対する対実的な結果の信頼性の高い計算を保証する。
論文 参考訳(メタデータ) (2023-11-07T00:36:51Z) - RCT Rejection Sampling for Causal Estimation Evaluation [25.845034753006367]
コンバウンディングは、観測データから因果効果の偏りのない推定に対する重要な障害である。
評価設計を簡略化し,実データを使用する,有望な実証評価戦略を構築した。
提案アルゴリズムは, 既成試料からオラクル推定器を評価した場合に, バイアスが小さくなることを示す。
論文 参考訳(メタデータ) (2023-07-27T20:11:07Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - Data-Driven Estimation of Heterogeneous Treatment Effects [15.140272661540655]
異種治療効果推定(ヘテロジニアス・エフェクト・アセスメント・アセスメント・アセスメント・アセスメント・アセスメント・アセスメント)は、経験科学において重要な問題である。
機械学習を用いた不均一な処理効果推定のための最先端データ駆動手法について調査する。
論文 参考訳(メタデータ) (2023-01-16T21:36:49Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
バイアス付きデータセットのトレーニングにおけるバイアスの緩和は、重要なオープンな問題である。
複数のタスクにまたがる様々なデバイアス化手法の性能について検討する。
データ条件が相対モデルの性能に強い影響を与えることがわかった。
論文 参考訳(メタデータ) (2022-10-17T05:40:13Z) - Improving Data-driven Heterogeneous Treatment Effect Estimation Under
Structure Uncertainty [13.452510519858995]
ヘテロジニアス処理効果(HTE)推定(英:heregeneous treatment effect, HTE)は、意思決定や政策実施において重要な要素である。
本研究では,HTE推定のための特徴値を考慮した特徴選択手法を開発し,データから因果構造の関連部分を学習する。
論文 参考訳(メタデータ) (2022-06-25T16:26:35Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
本稿では脳波の分類に欠落したデータを扱うための2つの方法を提案する。
第1のアプローチでは、インプットされたデータと$k$-nearestの隣人アルゴリズムとの共分散を推定し、第2のアプローチでは、期待最大化アルゴリズム内で観測データの可能性を活用することにより、観測データに依存する。
その結果, 提案手法は観測データに基づく分類よりも優れており, 欠落したデータ比が増大しても高い精度を維持することができることがわかった。
論文 参考訳(メタデータ) (2021-10-19T14:24:50Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
臨床研究者はしばしばリスク予測モデルの中から選択し評価する。
振り返りデータから算出される標準メトリクスは、特定の仮定の下でのみモデルユーティリティに関係します。
予測が時間を通して繰り返し配信される場合、標準メトリクスとユーティリティの関係はさらに複雑になる。
論文 参考訳(メタデータ) (2020-06-02T16:26:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。