Self-Supervised Hybrid Inference in State-Space Models
- URL: http://arxiv.org/abs/2107.13349v1
- Date: Wed, 28 Jul 2021 13:26:14 GMT
- Title: Self-Supervised Hybrid Inference in State-Space Models
- Authors: David Ruhe, Patrick Forr\'e
- Abstract summary: We perform approximate inference in state-space models that allow for nonlinear higher-order Markov chains in latent space.
We do not rely on an additional parameterization of the generative model or supervision via uncorrupted observations or ground truth latent states.
We obtain competitive results on the chaotic Lorenz system compared to a fully supervised approach and outperform a method based on variational inference.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We perform approximate inference in state-space models that allow for
nonlinear higher-order Markov chains in latent space. The conditional
independencies of the generative model enable us to parameterize only an
inference model, which learns to estimate clean states in a self-supervised
manner using maximum likelihood. First, we propose a recurrent method that is
trained directly on noisy observations. Afterward, we cast the model such that
the optimization problem leads to an update scheme that backpropagates through
a recursion similar to the classical Kalman filter and smoother. In scientific
applications, domain knowledge can give a linear approximation of the latent
transition maps. We can easily incorporate this knowledge into our model,
leading to a hybrid inference approach. In contrast to other methods,
experiments show that the hybrid method makes the inferred latent states
physically more interpretable and accurate, especially in low-data regimes.
Furthermore, we do not rely on an additional parameterization of the generative
model or supervision via uncorrupted observations or ground truth latent
states. Despite our model's simplicity, we obtain competitive results on the
chaotic Lorenz system compared to a fully supervised approach and outperform a
method based on variational inference.
Related papers
- Recursive Learning of Asymptotic Variational Objectives [49.69399307452126]
General state-space models (SSMs) are widely used in statistical machine learning and are among the most classical generative models for sequential time-series data.
Online sequential IWAE (OSIWAE) allows for online learning of both model parameters and a Markovian recognition model for inferring latent states.
This approach is more theoretically well-founded than recently proposed online variational SMC methods.
arXiv Detail & Related papers (2024-11-04T16:12:37Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
We introduce a hybrid method that fine-tunes cutting-edge diffusion models by optimizing reward models through RL.
We demonstrate the capability of our approach to outperform the best designs in offline data, leveraging the extrapolation capabilities of reward models.
arXiv Detail & Related papers (2024-05-30T03:57:29Z) - Observation-Guided Diffusion Probabilistic Models [41.749374023639156]
We propose a novel diffusion-based image generation method called the observation-guided diffusion probabilistic model (OGDM)
Our approach reestablishes the training objective by integrating the guidance of the observation process with the Markov chain.
We demonstrate the effectiveness of our training algorithm using diverse inference techniques on strong diffusion model baselines.
arXiv Detail & Related papers (2023-10-06T06:29:06Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - Free-Form Variational Inference for Gaussian Process State-Space Models [21.644570034208506]
We propose a new method for inference in Bayesian GPSSMs.
Our method is based on freeform variational inference via inducing Hamiltonian Monte Carlo.
We show that our approach can learn transition dynamics and latent states more accurately than competing methods.
arXiv Detail & Related papers (2023-02-20T11:34:16Z) - Stochastic Parameterizations: Better Modelling of Temporal Correlations
using Probabilistic Machine Learning [1.5293427903448025]
We show that by using a physically-informed recurrent neural network within a probabilistic framework, our model for the 96 atmospheric simulation is competitive.
This is due to a superior ability to model temporal correlations compared to standard first-order autoregressive schemes.
We evaluate across a number of metrics from the literature, but also discuss how the probabilistic metric of likelihood may be a unifying choice for future climate models.
arXiv Detail & Related papers (2022-03-28T14:51:42Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
We introduce a method for inferring and predicting latent states in state-space models where observations can only be simulated, and transition dynamics are unknown.
We propose a way of doing likelihood-free inference (LFI) of states and state prediction with a limited number of simulations.
arXiv Detail & Related papers (2021-11-02T12:33:42Z) - Learning Stable Koopman Embeddings [9.239657838690228]
We present a new data-driven method for learning stable models of nonlinear systems.
We prove that every discrete-time nonlinear contracting model can be learnt in our framework.
arXiv Detail & Related papers (2021-10-13T05:44:13Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
offline reinforcement learning approaches can be divided into proximal and uncertainty-aware methods.
In this work, we demonstrate the benefit of combining the two in a latent variational model.
Our proposed metrics measure both the quality of out of distribution samples as well as the discrepancy of examples in the data.
arXiv Detail & Related papers (2021-02-22T19:42:40Z) - Joint Stochastic Approximation and Its Application to Learning Discrete
Latent Variable Models [19.07718284287928]
We show that the difficulty of obtaining reliable gradients for the inference model and the drawback of indirectly optimizing the target log-likelihood can be gracefully addressed.
We propose to directly maximize the target log-likelihood and simultaneously minimize the inclusive divergence between the posterior and the inference model.
The resulting learning algorithm is called joint SA (JSA)
arXiv Detail & Related papers (2020-05-28T13:50:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.