MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories
- URL: http://arxiv.org/abs/2106.01808v1
- Date: Thu, 3 Jun 2021 12:59:16 GMT
- Title: MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories
- Authors: Giulio Isacchini, Natanael Spisak, Armita Nourmohammad, Thierry Mora,
Aleksandra M. Walczak
- Abstract summary: Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
- Score: 61.3299263929289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation-based inference enables learning the parameters of a model even
when its likelihood cannot be computed in practice. One class of methods uses
data simulated with different parameters to infer an amortized estimator for
the likelihood-to-evidence ratio, or equivalently the posterior function. We
show that this approach can be formulated in terms of mutual information
maximization between model parameters and simulated data. We use this
equivalence to reinterpret existing approaches for amortized inference, and
propose two new methods that rely on lower bounds of the mutual information. We
apply our framework to the inference of parameters of stochastic processes and
chaotic dynamical systems from sampled trajectories, using artificial neural
networks for posterior prediction. Our approach provides a unified framework
that leverages the power of mutual information estimators for inference.
Related papers
- All-in-one simulation-based inference [19.41881319338419]
We present a new amortized inference method -- the Simformer -- which overcomes current limitations.
The Simformer outperforms current state-of-the-art amortized inference approaches on benchmark tasks.
It can be applied to models with function-valued parameters, it can handle inference scenarios with missing or unstructured data, and it can sample arbitrary conditionals of the joint distribution of parameters and data.
arXiv Detail & Related papers (2024-04-15T10:12:33Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - On the Relationship Between Variational Inference and Auto-Associative
Memory [68.8204255655161]
We study how different neural network approaches to variational inference can be applied in this framework.
We evaluate the obtained algorithms on the CIFAR10 and CLEVR image datasets and compare them with other associative memory models.
arXiv Detail & Related papers (2022-10-14T14:18:47Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - How To Train Your Program [0.11421942894219898]
We present a Bayesian approach to machine learning with probabilistic programs.
We frame the approach as a design pattern of probabilistic programming referred to herein as stump and fungus'
arXiv Detail & Related papers (2021-05-08T09:26:34Z) - Score Matched Conditional Exponential Families for Likelihood-Free
Inference [0.0]
Likelihood-Free Inference (LFI) relies on simulations from the model.
We generate parameter-simulation pairs from the model independently on the observation.
We use Neural Networks whose weights are tuned with Score Matching to learn a conditional exponential family likelihood approximation.
arXiv Detail & Related papers (2020-12-20T11:57:30Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - A Semiparametric Approach to Interpretable Machine Learning [9.87381939016363]
Black box models in machine learning have demonstrated excellent predictive performance in complex problems and high-dimensional settings.
Their lack of transparency and interpretability restrict the applicability of such models in critical decision-making processes.
We propose a novel approach to trading off interpretability and performance in prediction models using ideas from semiparametric statistics.
arXiv Detail & Related papers (2020-06-08T16:38:15Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z) - On Contrastive Learning for Likelihood-free Inference [20.49671736540948]
Likelihood-free methods perform parameter inference in simulator models where evaluating the likelihood is intractable.
One class of methods for this likelihood-free problem uses a classifier to distinguish between pairs of parameter-observation samples.
Another popular class of methods fits a conditional distribution to the parameter posterior directly, and a particular recent variant allows for the use of flexible neural density estimators.
arXiv Detail & Related papers (2020-02-10T13:14:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.