Models of Hidden Purity
- URL: http://arxiv.org/abs/2107.13593v1
- Date: Wed, 28 Jul 2021 18:49:40 GMT
- Title: Models of Hidden Purity
- Authors: Frank Wilczek
- Abstract summary: I extend, apply, and generalize a model of a quantum radiator proposed by Griffiths.
Their analysis suggests experimental probes of some basic but subtle implications of quantum theory.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: I extend, apply, and generalize a model of a quantum radiator proposed by
Griffiths to construct models of radiation fields that exhibit high entropy for
long periods of time but approach pure states asymptotically. The models, which
are fully consistent with the basic principles of quantum theory, provide
coarse-grained models of both realistic physical systems and exotic space-times
including black and white holes and baby and prodigal universes. Their analysis
suggests experimental probes of some basic but subtle implications of quantum
theory including interference between a particle and its own past, influence of
quantum statistical entanglement on entropy flow, and residual entanglement
connecting distant radiation with a degenerate source.
Related papers
- A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - Intrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum
Dynamics of Cosmological Perturbations [0.0]
entropy of cosmological perturbations can be studied by treating them in the framework of squeezed quantum systems.
We compute the covariance matrix elements of the parametric quantum field and solve for the evolution of the density matrix elements.
We show explicitly why the entropy for the squeezed yet closed system is zero, but is proportional to the particle number produced.
arXiv Detail & Related papers (2021-10-06T13:43:00Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Generation and dynamics of entangled fermion-photon-phonon states in
nanocavities [0.0]
We develop the analytic theory describing the formation and evolution of entangled quantum states for a fermionic quantum emitter coupled to a quantized electromagnetic field.
The theory is applicable to a broad range of cavity quantum optomechanics problems and emerging research on plasmonic nanocavities coupled to single molecules and other quantum emitters.
arXiv Detail & Related papers (2020-07-04T18:41:25Z) - Single-Atom Verification of the Information-Theoretical Bound of
Irreversibility at the Quantum Level [0.11242503819703256]
In a quantum mechanical fashion, we report the first theoretical prediction and experimental exploration of an information-theoretical bound on the entropy production.
Our finding is fundamental to any quantum thermodynamical process and indicates much difference and complexity in quantum thermodynamics with respect to the conventionally classical counterpart.
arXiv Detail & Related papers (2020-07-04T07:20:31Z) - Quantum interactions with pulses of radiation [77.34726150561087]
This article presents a general master equation formalism for the interaction between travelling pulses of quantum radiation and localized quantum systems.
We develop a complete input-output theory to describe the driving of quantum systems by arbitrary incident pulses of radiation and the quantum state of the field emitted into any desired outgoing temporal mode.
arXiv Detail & Related papers (2020-03-10T08:35:18Z) - Finite-temperature transport in one-dimensional quantum lattice models [0.0]
We review the current understanding of transport in one-dimensional lattice models.
We elaborate on state-of-the-art theoretical methods, including both analytical and computational approaches.
arXiv Detail & Related papers (2020-03-06T18:00:11Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.