論文の概要: UIBert: Learning Generic Multimodal Representations for UI Understanding
- arxiv url: http://arxiv.org/abs/2107.13731v1
- Date: Thu, 29 Jul 2021 03:51:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-30 21:24:42.034854
- Title: UIBert: Learning Generic Multimodal Representations for UI Understanding
- Title(参考訳): UIBert:UI理解のためのジェネリックマルチモーダル表現の学習
- Authors: Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas Sunkara, Abhinav
Rastogi, Jindong Chen, Blaise Aguera y Arcas
- Abstract要約: 大規模な未ラベルUIデータに対する新しい事前学習タスクによって訓練されたトランスフォーマーベースの共同画像テキストモデルを提案する。
私たちの重要な直感は、UIの異種機能は自己整合である、つまり、UIコンポーネントのイメージとテキスト機能は、相互に予測可能である、ということです。
この自己アライメントを利用した5つの事前学習タスクを提案する。
UIBertは、最大9.26%の精度で強力なマルチモーダルベースラインを上回ります。
- 参考スコア(独自算出の注目度): 12.931540149350633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To improve the accessibility of smart devices and to simplify their usage,
building models which understand user interfaces (UIs) and assist users to
complete their tasks is critical. However, unique challenges are proposed by
UI-specific characteristics, such as how to effectively leverage multimodal UI
features that involve image, text, and structural metadata and how to achieve
good performance when high-quality labeled data is unavailable. To address such
challenges we introduce UIBert, a transformer-based joint image-text model
trained through novel pre-training tasks on large-scale unlabeled UI data to
learn generic feature representations for a UI and its components. Our key
intuition is that the heterogeneous features in a UI are self-aligned, i.e.,
the image and text features of UI components, are predictive of each other. We
propose five pretraining tasks utilizing this self-alignment among different
features of a UI component and across various components in the same UI. We
evaluate our method on nine real-world downstream UI tasks where UIBert
outperforms strong multimodal baselines by up to 9.26% accuracy.
- Abstract(参考訳): スマートデバイスのアクセシビリティを改善し,その使用を簡素化するためには,ユーザインターフェース(UI)を理解し,ユーザのタスク完了を支援するモデルの構築が重要である。
しかし、画像、テキスト、構造メタデータを含むマルチモーダルui機能を効果的に活用する方法や、高品質のラベル付きデータを利用できない場合の優れたパフォーマンスを実現する方法など、ui特有の特徴によってユニークな課題が提案されている。
このような課題に対処するために,大規模なラベルなしuiデータに対する新しい事前トレーニングタスクを通じてトレーニングされたトランスフォーマベースの共同画像テキストモデルであるuibertを導入して,uiとそのコンポーネントの汎用的な特徴表現を学習する。
私たちの重要な直感は、UIの異種機能は自己整合性、すなわちUIコンポーネントのイメージとテキスト機能は、互いに予測可能であることです。
本稿では,この自己調整をuiコンポーネントの異なる機能と同一ui内の各種コンポーネント間で行う5つの事前学習タスクを提案する。
提案手法は,uibertが強力なマルチモーダルベースラインを最大9.26%の精度で上回る9つの実世界のダウンストリームuiタスクで評価する。
関連論文リスト
- ShowUI: One Vision-Language-Action Model for GUI Visual Agent [80.50062396585004]
グラフィカルユーザインタフェース(GUI)アシスタントの構築は、人間のワークフロー生産性を向上させるための大きな約束である。
デジタルワールドにおける視覚言語アクションモデル、すなわちShowUIを開発し、以下のイノベーションを特徴とする。
256Kデータを使用した軽量な2BモデルであるShowUIは、ゼロショットのスクリーンショットグラウンドで75.1%の精度を実現している。
論文 参考訳(メタデータ) (2024-11-26T14:29:47Z) - Harnessing Webpage UIs for Text-Rich Visual Understanding [112.01029887404296]
テキストベース大規模言語モデル(LLM)を用いたWebページUIからの汎用マルチモーダル命令の合成を提案する。
これらの命令はUIスクリーンショットと組み合わせて、マルチモーダルモデルのトレーニングを行う。
我々は、100万のWebサイトから730万のサンプルを含むデータセットであるMultiUIを紹介し、多様なマルチモーダルタスクとUIレイアウトをカバーした。
論文 参考訳(メタデータ) (2024-10-17T17:48:54Z) - AMEX: Android Multi-annotation Expo Dataset for Mobile GUI Agents [50.39555842254652]
我々は,モバイルシナリオにおけるAIエージェントの研究を進めるために,Android Multi-Annotation EXpo (AMEX)を紹介した。
AMEXは110のモバイルアプリケーションから104K以上の高解像度のスクリーンショットで構成されており、複数のレベルでアノテートされている。
AMEXには、GUIインタラクティブな要素接地、GUIスクリーンと要素機能記述、複雑な自然言語命令の3段階のアノテーションが含まれている。
論文 参考訳(メタデータ) (2024-07-03T17:59:58Z) - Tell Me What's Next: Textual Foresight for Generic UI Representations [65.10591722192609]
We propose Textual Foresight, a novel pretraining objective for learn UI screen representations。
Textual Foresightは、現在のUIとローカルアクションを考慮すれば、将来のUI状態のグローバルなテキスト記述を生成する。
新たに構築したモバイルアプリデータセットであるOpenAppでトレーニングを行い、アプリUI表現学習のための最初の公開データセットを作成しました。
論文 参考訳(メタデータ) (2024-06-12T02:43:19Z) - UIClip: A Data-driven Model for Assessing User Interface Design [20.66914084220734]
ユーザインタフェースの設計品質と視覚的関連性を評価するための機械学習モデルUIClipを開発した。
UIClipがUI設計品質の即時評価に依存するダウンストリームアプリケーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2024-04-18T20:43:08Z) - UI Semantic Group Detection: Grouping UI Elements with Similar Semantics
in Mobile Graphical User Interface [10.80156450091773]
UI要素のグループ化に関する既存の研究は、主に単一のUI関連ソフトウェアエンジニアリングタスクに焦点を当てており、そのグループは外観と機能が異なる。
類似のセマンティクスで隣接したテキストと非テキスト要素をパックするセマンティクスコンポーネントグループを提案する。
UIページ上のセマンティックコンポーネント群を認識するために,我々は,堅牢で深層学習に基づく視覚検出システムであるUISCGDを提案する。
論文 参考訳(メタデータ) (2024-03-08T01:52:44Z) - ILuvUI: Instruction-tuned LangUage-Vision modeling of UIs from Machine
Conversations [13.939350184164017]
VLM(Multimodal Vision-Language Models)は、画像と言語を融合した理解から強力なアプリケーションを可能にする。
既存のピクセルベース手法とLarge Language Model(LLM)を組み合わせることで、VLMのペアテキストイメージトレーニングデータを生成するためのレシピをUIドメインに適用する。
我々は、Q&A、UI記述、計画をカバーするUIと組み合わせた335Kの会話例のデータセットを生成し、UIタスクのための会話VLMを微調整するためにそれを使用します。
論文 参考訳(メタデータ) (2023-10-07T16:32:34Z) - VINS: Visual Search for Mobile User Interface Design [66.28088601689069]
本稿では、UIイメージを入力として、視覚的に類似したデザイン例を検索するビジュアル検索フレームワークVINSを紹介する。
このフレームワークは、平均平均精度76.39%のUI検出を実現し、類似したUI設計をクエリする際の高いパフォーマンスを実現している。
論文 参考訳(メタデータ) (2021-02-10T01:46:33Z) - ActionBert: Leveraging User Actions for Semantic Understanding of User
Interfaces [12.52699475631247]
ActionBertと呼ばれる新しいトレーニング済みのUI表現モデルを紹介します。
本手法は,ユーザインタラクショントレースにおける視覚的,言語的,ドメイン特有の特徴を活用し,uiとそのコンポーネントの汎用的な特徴表現を事前学習するように設計されている。
実験により、提案するactionbertモデルは、下流タスク全体のマルチモーダルベースラインを最大15.5%上回ることがわかった。
論文 参考訳(メタデータ) (2020-12-22T20:49:52Z) - User-Guided Domain Adaptation for Rapid Annotation from User
Interactions: A Study on Pathological Liver Segmentation [49.96706092808873]
マスクベースの医用画像のアノテーション、特に3Dデータは、信頼できる機械学習モデルを開発する上でボトルネックとなる。
ユーザガイド付きドメイン適応(UGDA)フレームワークを提案する。このフレームワークは,UIとマスクの複合分布をモデル化するために,予測に基づくドメイン適応(PADA)を利用する。
UGDAは、利用可能なUIのごく一部しか見ていない場合でも、最先端のパフォーマンスを維持することができる。
論文 参考訳(メタデータ) (2020-09-05T04:24:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。