The Adaptive Multi-Factor Model and the Financial Market
- URL: http://arxiv.org/abs/2107.14410v1
- Date: Fri, 30 Jul 2021 03:05:03 GMT
- Title: The Adaptive Multi-Factor Model and the Financial Market
- Authors: Liao Zhu
- Abstract summary: The introduction of constituents like Exchange-Traded Funds, and the wide-use of advanced technologies such as algorithmic trading, results in a boom of the data.
Traditional statistical methods always suffer from the high-dimensional, high-correlation, and time-varying instinct of the financial data.
With the proposed methodologies, we can have more interpretable models, clearer explanations, and better predictions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern evolvements of the technologies have been leading to a profound
influence on the financial market. The introduction of constituents like
Exchange-Traded Funds, and the wide-use of advanced technologies such as
algorithmic trading, results in a boom of the data which provides more
opportunities to reveal deeper insights. However, traditional statistical
methods always suffer from the high-dimensional, high-correlation, and
time-varying instinct of the financial data. In this dissertation, we focus on
developing techniques to stress these difficulties. With the proposed
methodologies, we can have more interpretable models, clearer explanations, and
better predictions.
Related papers
- Analysis of Financial Risk Behavior Prediction Using Deep Learning and Big Data Algorithms [7.713045399751312]
This paper explores the feasibility and effectiveness of using deep learning and big data algorithms for financial risk behavior prediction.
A deep learning-based big data risk prediction framework is designed and experimentally validated on actual financial datasets.
arXiv Detail & Related papers (2024-10-25T08:52:04Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - A Hypothesis on Good Practices for AI-based Systems for Financial Time
Series Forecasting: Towards Domain-Driven XAI Methods [0.0]
Machine learning and deep learning have become increasingly prevalent in financial prediction and forecasting tasks.
These models often lack transparency and interpretability, making them challenging to use in sensitive domains like finance.
This paper explores good practices for deploying explainability in AI-based systems for finance.
arXiv Detail & Related papers (2023-11-13T17:56:45Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Financial Markets Prediction with Deep Learning [11.26482563151052]
We propose a novel one-dimensional convolutional neural networks (CNN) model to predict financial market movement.
The customized one-dimensional convolutional layers scan financial trading data through time, while different types of data, such as prices and volume, share parameters ( Kernels) with each other.
Our model automatically extracts features instead of using traditional technical indicators.
arXiv Detail & Related papers (2021-04-05T19:36:48Z) - Deep Portfolio Optimization via Distributional Prediction of Residual
Factors [3.9189409002585562]
We propose a novel method of constructing a portfolio based on predicting the distribution of a financial quantity called residual factors.
We demonstrate the efficacy of our method on U.S. and Japanese stock market data.
arXiv Detail & Related papers (2020-12-14T04:09:52Z) - Super-App Behavioral Patterns in Credit Risk Models: Financial,
Statistical and Regulatory Implications [110.54266632357673]
We present the impact of alternative data that originates from an app-based marketplace, in contrast to traditional bureau data, upon credit scoring models.
Our results, validated across two countries, show that these new sources of data are particularly useful for predicting financial behavior in low-wealth and young individuals.
arXiv Detail & Related papers (2020-05-09T01:32:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.