論文の概要: Evaluating the COVID-19 Identification ResNet (CIdeR) on the INTERSPEECH
COVID-19 from Audio Challenges
- arxiv url: http://arxiv.org/abs/2107.14549v1
- Date: Fri, 30 Jul 2021 10:59:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2021-08-02 12:50:45.093268
- Title: Evaluating the COVID-19 Identification ResNet (CIdeR) on the INTERSPEECH
COVID-19 from Audio Challenges
- Title(参考訳): InterSPEECH COVID-19 における COVID-19 Identification ResNet (CIdeR) の評価
- Authors: Alican Akman, Harry Coppock, Alexander Gaskell, Panagiotis Tzirakis,
Lyn Jones, Bj\"orn W. Schuller
- Abstract要約: CIdeRはエンド・ツー・エンドのディープラーニング・ニューラルネットワークで、個人が新型コロナウイルス陽性か新型コロナウイルス陰性かを分類するために設計された。
COVID-19 CoughとInterSPEECH 2021, ComParE, DiCOVAの両者によるCIdeRのバイナリ診断の可能性を示した。
- 参考スコア(独自算出の注目度): 59.78485839636553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report on cross-running the recent COVID-19 Identification ResNet (CIdeR)
on the two Interspeech 2021 COVID-19 diagnosis from cough and speech audio
challenges: ComParE and DiCOVA. CIdeR is an end-to-end deep learning neural
network originally designed to classify whether an individual is COVID-positive
or COVID-negative based on coughing and breathing audio recordings from a
published crowdsourced dataset. In the current study, we demonstrate the
potential of CIdeR at binary COVID-19 diagnosis from both the COVID-19 Cough
and Speech Sub-Challenges of INTERSPEECH 2021, ComParE and DiCOVA. CIdeR
achieves significant improvements over several baselines.
- Abstract(参考訳): 我々は,最近のcovid-19識別 resnet (cider) を横断的に調査し,cough と speech audio の2つの難問である compare と dicova について報告した。
CIdeRは、個人が新型コロナウイルス陽性であるか、あるいは新型コロナウイルス陰性であるかを、クラウドソーシングされたデータセットからの音声記録と呼吸に基づいて分類するために設計された、エンドツーエンドのディープラーニングニューラルネットワークである。
本研究は,InterSPEECH 2021,ComParE,DiCOVAの2成分性COVID-19診断におけるCIdeRの可能性を示すものである。
CIdeRは、いくつかのベースラインで大幅に改善されている。
関連論文リスト
- COVYT: Introducing the Coronavirus YouTube and TikTok speech dataset
featuring the same speakers with and without infection [4.894353840908006]
私たちは、65人の話者から8時間以上のスピーチを含む公開ソースから収集された新しい新型コロナウイルスデータセットであるCOVYTデータセットを紹介します。
他の既存のCOVID-19サウンドデータセットと比較すると、COVYTデータセットのユニークな特徴は、全65話者から陽性と陰性の両方のサンプルを含むことである。
論文 参考訳(メタデータ) (2022-06-20T16:26:51Z) - COVID-Net CXR-2: An Enhanced Deep Convolutional Neural Network Design
for Detection of COVID-19 Cases from Chest X-ray Images [58.35627258364233]
RT-PCR検査への無料スクリーニング戦略として胸部X線(CXR)イメージングの使用は成長し続けています。
我々は、CXR画像からCOVID-19を検出するための深層畳み込みニューラルネットワーク設計であるCOVID-Net CXR-2を紹介する。
ベンチマークデータセットは、少なくとも51カ国16,656人の多国籍コホートから19,203個のCXR画像で構成された。
論文 参考訳(メタデータ) (2021-05-14T04:29:21Z) - COVID-Net CXR-S: Deep Convolutional Neural Network for Severity
Assessment of COVID-19 Cases from Chest X-ray Images [74.77272804752306]
胸部CXR画像に基づくSARS-CoV-2陽性患者の空間重症度を予測する畳み込みニューラルネットワークであるCOVID-Net CXR-Sについて紹介する。
患者15,000人以上の多国籍コホートから得られた16,000以上のCXR画像から得られた表現的知識を,重症度評価のためのカスタムネットワークアーキテクチャへ伝達する。
提案したCXR-Sは、新型コロナウイルス陽性患者のCXR画像のコンピュータ支援による重症度評価のための強力なツールとなる可能性がある。
論文 参考訳(メタデータ) (2021-05-01T14:15:12Z) - COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19
from Chest CT Images Through Bigger, More Diverse Learning [70.92379567261304]
胸部CT画像からのCOVID-19検出のための深部ニューラルネットワークであるCOVID-Net CT-2を導入する。
説明力を活用して、COVID-Net CT-2の意思決定行動を調査します。
結果は有望であり、コンピュータ支援型COVID-19アセスメントの有効なツールとして、ディープニューラルネットワークの強い可能性を示唆している。
論文 参考訳(メタデータ) (2021-01-19T03:04:09Z) - End-2-End COVID-19 Detection from Breath & Cough Audio [68.41471917650571]
クラウドソースのオーディオサンプルからエンドツーエンドのディープラーニングを使用してCOVID-19を診断する最初の試みを実証します。
本研究では, 人工深層ニューラルネットワークを用いて, 人工呼吸器から新型コロナを診断する新しいモデル戦略を提案する。
論文 参考訳(メタデータ) (2021-01-07T01:13:00Z) - Exploiting Shared Knowledge from Non-COVID Lesions for
Annotation-Efficient COVID-19 CT Lung Infection Segmentation [10.667692828593125]
新型コロナウイルスの肺感染分画における相関駆動型協調学習モデルを提案する。
我々は、抽出された特徴間の関係の整合性を調整するために、COVIDと非COVIDの病変間の共通知識を利用する。
本手法は,高品質なアノテーションが不足している既存手法と比較して,高いセグメンテーション性能を実現する。
論文 参考訳(メタデータ) (2020-12-31T11:40:29Z) - Audio, Speech, Language, & Signal Processing for COVID-19: A
Comprehensive Overview [0.0]
新型コロナウイルス(COVID-19)のパンデミックは、2020年の世界的研究の焦点となっている。
新型コロナウイルスの症状の大部分は、呼吸器系の機能に関連している。
この研究は、音声やその他の人間が生成する音声信号の中で、新型コロナウイルスのマーカーを特定することに焦点を当てている。
論文 参考訳(メタデータ) (2020-11-29T21:33:59Z) - Studying the Similarity of COVID-19 Sounds based on Correlation Analysis
of MFCC [1.9659095632676098]
本稿では,Mel-Frequency Cepstral Coefficients (MFCCs) の抽出における音声信号処理の重要性について述べる。
以上の結果から、MFCCは新型コロナウイルスと非新型コロナウイルスの検体の間ではより堅牢であるのに対し、異なる新型コロナウイルスの発声音と呼吸音との間には高い類似性があることが判明した。
論文 参考訳(メタデータ) (2020-10-17T11:38:05Z) - COVID-Net: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest X-Ray Images [93.0013343535411]
我々は,胸部X線(CXR)画像から新型コロナウイルスの症例を検出するための,深層畳み込みニューラルネットワーク設計であるCOVID-Netを紹介した。
著者たちの知る限りでは、COVID-NetはCXRイメージからCOVID-19を検出するための、最初のオープンソースネットワーク設計の1つである。
また,13,870人の患者を対象に,13,975個のCXR画像からなるオープンアクセスベンチマークデータセットであるCOVIDxも導入した。
論文 参考訳(メタデータ) (2020-03-22T12:26:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。