Finite-size scalings in measurement-induced dynamical phase transition
- URL: http://arxiv.org/abs/2107.14647v2
- Date: Tue, 7 Dec 2021 13:00:37 GMT
- Title: Finite-size scalings in measurement-induced dynamical phase transition
- Authors: Ranjan Modak, Debraj Rakshit, Ujjwal Sen
- Abstract summary: We study the fate of the many-body quantum Zeno transition if the system is allowed to evolve repetitively under unitary dynamics.
We use different diagnostics, such as long-time evolved entanglement entropy, purity and their fluctuations in order to characterize the transition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Repetitive measurements can cause freezing of dynamics of a quantum state,
which is known as quantum Zeno effect. We consider an interacting
one-dimensional fermionic system and study the fate of the many-body quantum
Zeno transition if the system is allowed to evolve repetitively under the
unitary dynamics, followed by a measurement process. Measurement induced phase
transitions can be accessed by tuning a suitably defined parameter representing
measurement strength (frequency). We use different diagnostics, such as
long-time evolved entanglement entropy, purity and their fluctuations in order
to characterize the transition. We further perform a finite size scaling
analysis in order to detect the transition points and evaluate associated
scaling exponents via an unbiased numerical strategy of cost function
minimization, which provides a platform to compare finite-size scaling ansatze
proposed previously in context of many-body Zeno transition.
Related papers
- Unraveling-induced entanglement phase transition in diffusive trajectories of continuously monitored noninteracting fermionic systems [0.0]
We show a transition from a phase with area-law entanglement to one where entanglement scales logarithmically with the system size.
Our findings may be relevant for tailoring quantum correlations in noisy quantum devices.
arXiv Detail & Related papers (2024-06-07T12:08:07Z) - Measurement-induced phase transitions by matrix product states scaling [0.0]
We study the time evolution of long quantum spin chains subjected to continuous monitoring via matrix product states (MPS) at fixed bond dimension.
We show that the error rate displays a phase transition in the monitoring strength, which can be well detected by scaling analysis with relatively low values of bond dimensions.
arXiv Detail & Related papers (2024-02-20T17:22:36Z) - Action formalism for geometric phases from self-closing quantum
trajectories [55.2480439325792]
We study the geometric phase of a subset of self-closing trajectories induced by a continuous Gaussian measurement of a single qubit system.
We show that the geometric phase of the most likely trajectories undergoes a topological transition for self-closing trajectories as a function of the measurement strength parameter.
arXiv Detail & Related papers (2023-12-22T15:20:02Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Exponential shortcut to measurement-induced entanglement phase
transitions [0.0]
Recently discovered measurement-induced entanglement phase transitions in monitored quantum circuits provide a novel example of far-from-equilibrium quantum criticality.
We propose a highly efficient strategy for experimentally accessing these transitions through fluctuations.
Remarkably, the phase transition can be revealed by measuring fluctuations of only a handful of qubits.
arXiv Detail & Related papers (2023-02-27T18:54:57Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Experimental Realization of a Measurement-Induced Entanglement Phase
Transition on a Superconducting Quantum Processor [0.0]
We report the realization of a measurement-induced entanglement transition on superconducting quantum processors with mid-circuit readout capability.
Our work paves the way for the use of mid-circuit measurement as an effective resource for quantum simulation on near-term quantum computers.
arXiv Detail & Related papers (2022-03-08T19:01:04Z) - Dissipative Floquet Dynamics: from Steady State to Measurement Induced
Criticality in Trapped-ion Chains [0.0]
Quantum systems evolving unitarily and subject to quantum measurements exhibit various types of non-equilibrium phase transitions.
Dissipative phase transitions in steady states of time-independent Liouvillians and measurement induced phase transitions are two primary examples.
We show that a dissipative phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase emerges for long-range systems.
arXiv Detail & Related papers (2021-07-12T18:18:54Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.