Unraveling-induced entanglement phase transition in diffusive trajectories of continuously monitored noninteracting fermionic systems
- URL: http://arxiv.org/abs/2406.04869v1
- Date: Fri, 7 Jun 2024 12:08:07 GMT
- Title: Unraveling-induced entanglement phase transition in diffusive trajectories of continuously monitored noninteracting fermionic systems
- Authors: Moritz Eissler, Igor Lesanovsky, Federico Carollo,
- Abstract summary: We show a transition from a phase with area-law entanglement to one where entanglement scales logarithmically with the system size.
Our findings may be relevant for tailoring quantum correlations in noisy quantum devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The competition between unitary quantum dynamics and dissipative stochastic effects, as emerging from continuous-monitoring processes, can culminate in measurement-induced phase transitions. Here, a many-body system abruptly passes, when exceeding a critical measurement rate, from a highly entangled phase to a low-entanglement one. We consider a different perspective on entanglement phase transitions and explore whether these can emerge when the measurement process itself is modified, while keeping the measurement rate fixed. To illustrate this idea, we consider a noninteracting fermionic system and focus on diffusive detection processes. Through extensive numerical simulations, we show that, upon varying a suitable \textit{unraveling parameter} -- interpolating between measurements of different quadrature operators -- the system displays a transition from a phase with area-law entanglement to one where entanglement scales logarithmically with the system size. Our findings may be relevant for tailoring quantum correlations in noisy quantum devices and for conceiving optimal classical simulation strategies.
Related papers
- Controlling measurement induced phase transitions with tunable detector coupling [44.99833362998488]
We study the evolution of a quantum many-body system driven by two competing measurements.
We employ a positive operator-valued measurement with variable coupling between the system and detector.
arXiv Detail & Related papers (2024-04-11T17:02:58Z) - Experimental demonstration of scalable cross-entropy benchmarking to
detect measurement-induced phase transitions on a superconducting quantum
processor [0.0]
We propose a protocol to detect entanglement phase transitions using linear cross-entropy.
We demonstrate this protocol in systems with one-dimensional and all-to-all connectivities on IBM's quantum hardware on up to 22 qubits.
Our demonstration paves the way for studies of measurement-induced entanglement phase transitions and associated critical phenomena on larger near-term quantum systems.
arXiv Detail & Related papers (2024-03-01T19:35:54Z) - Action formalism for geometric phases from self-closing quantum
trajectories [55.2480439325792]
We study the geometric phase of a subset of self-closing trajectories induced by a continuous Gaussian measurement of a single qubit system.
We show that the geometric phase of the most likely trajectories undergoes a topological transition for self-closing trajectories as a function of the measurement strength parameter.
arXiv Detail & Related papers (2023-12-22T15:20:02Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Exponential shortcut to measurement-induced entanglement phase
transitions [0.0]
Recently discovered measurement-induced entanglement phase transitions in monitored quantum circuits provide a novel example of far-from-equilibrium quantum criticality.
We propose a highly efficient strategy for experimentally accessing these transitions through fluctuations.
Remarkably, the phase transition can be revealed by measuring fluctuations of only a handful of qubits.
arXiv Detail & Related papers (2023-02-27T18:54:57Z) - Finite-size scalings in measurement-induced dynamical phase transition [0.0]
We study the fate of the many-body quantum Zeno transition if the system is allowed to evolve repetitively under unitary dynamics.
We use different diagnostics, such as long-time evolved entanglement entropy, purity and their fluctuations in order to characterize the transition.
arXiv Detail & Related papers (2021-07-30T14:11:22Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.