Tunable Photon blockade with single atom in a cavity under
electromagnetically induced transparency
- URL: http://arxiv.org/abs/2107.14720v1
- Date: Fri, 30 Jul 2021 15:45:38 GMT
- Title: Tunable Photon blockade with single atom in a cavity under
electromagnetically induced transparency
- Authors: Jing Tang, Yuangang Deng, and Chaohong Lee
- Abstract summary: We present an experimental proposal to achieve a strong photon blockade by employing electromagnetically induced transparency (EIT) with single alkaline-earth-metal atom trapped in an optical cavity.
By exploiting the interplay between Stark shift and control field, the strong photon blockade at atomic quasi-dark state resonance has an optimal second-order correlation function.
Our results reveal a new strategy to realize high-quality single photon sources, which could open up a new avenue for engineering nonclassical quantum states in cavity quantum electrodynamics.
- Score: 2.433293618209319
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an experimental proposal to achieve a strong photon blockade by
employing electromagnetically induced transparency (EIT) with single
alkaline-earth-metal atom trapped in an optical cavity. In the presence of
optical Stark shift, both second-order correlation function and cavity
transmission exhibit asymmetric structures between the red and blue sidebands
of the cavity. For a weak control field, the photon quantum statistics for the
coherent transparency window (i.e. atomic quasi-dark state resonance) are
insensitive to the Stark shift, which should also be immune to the spontaneous
emission of the excited state by taking advantage of the intrinsic dark-state
polariton of EIT. Interestingly, by exploiting the interplay between Stark
shift and control field, the strong photon blockade at atomic quasi-dark state
resonance has an optimal second-order correlation function
$g^{(2)}(0)\sim10^{-4}$ and a high cavity transmission simultaneously. The
underlying physical mechanism is ascribed to the Stark shift enhanced spectrum
anharmonicity and the EIT hosted strong nonlinearity with loss-insensitive
atomic quasi-dark state resonance, which is essentially different from the
conventional proposal with emerging Kerr nonlinearity in cavity-EIT. Our
results reveal a new strategy to realize high-quality single photon sources,
which could open up a new avenue for engineering nonclassical quantum states in
cavity quantum electrodynamics.
Related papers
- All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Coherent Coupling of a Diamond Tin-Vacancy Center to a Tunable Open Microcavity [0.0]
We present a quantum photonic interface based on a single Tin-Vacancy center in a micrometer-thin diamond membrane coupled to a tunable open microcavity.
We observe a transmission dip of 50 % for low incident photon number per Purcell-reduced excited state lifetime, while the dip disappears as the emitter is saturated with higher photon number.
This work establishes a versatile and tunable platform for advanced quantum optics experiments and proof-of-principle demonstrations towards quantum networking with solid-state qubits.
arXiv Detail & Related papers (2023-11-14T19:00:02Z) - Microwave-based quantum control and coherence protection of tin-vacancy
spin qubits in a strain-tuned diamond membrane heterostructure [54.501132156894435]
Tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K.
We introduce a new platform that overcomes these challenges - SnV centers in uniformly strained thin diamond membranes.
The presence of crystal strain suppresses temperature dependent dephasing processes, leading to a considerable improvement of the coherence time up to 223 $mu$s at 4 K.
arXiv Detail & Related papers (2023-07-21T21:40:21Z) - Electromagnetically Induced Transparency and Optical Pumping in the
Hyperfine Paschen-Back Regime [0.0]
We report experiments of rubidium vapor in a high magnetic field under conditions of electromagnetically induced transparency (EIT) and optical pumping.
The 1.1 T static magnetic field decouples nuclear and electronic spins and shifts each magnetic state via the Zeeman effect.
We conclude that the cleanliness'' of this system greatly enhances the capabilities of quantum control in hot vapor.
arXiv Detail & Related papers (2023-07-17T15:05:14Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Nonclassical correlated deterministic single-photon pairs for a trapped
atom in bimodal cavities [0.0]
Single photons and single-photon pairs, inherently nonclassical in their nature, are fundamental elements of quantum sciences and technologies.
We propose to realize the nonclassical correlated deterministic photon pairs at the single-photon level for a single atom trapped in bimodal cavities.
arXiv Detail & Related papers (2022-04-15T08:05:26Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - Raman Imaging of Atoms Inside a High-bandwidth Cavity [0.0]
High-bandwidth, fiber-based optical cavities are a promising building block for future quantum networks.
In high-bandwidth cavities, standard fluorescence imaging on the atom-cavity resonance line for controlling atom positions is impaired.
We restore imaging of $87$Rb atoms strongly coupled to such a fiber Fabry-P'erot cavity by detecting the repumper fluorescence.
arXiv Detail & Related papers (2022-02-10T23:39:16Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Non-reciprocal Cavity Polariton with Atoms Strongly Coupled to Optical
Cavity [21.013802417752025]
We experimentally demonstrate a chiral cavity QED system with multiple atoms strongly coupled to a Fabry-Perot cavity.
By polarizing the internal quantum state of the atoms, the time-reversal symmetry of the atom-cavity interaction is broken.
The strongly coupled atom-cavity system can be described by non-reciprocal quasiparticles, i.e., the cavity polariton.
arXiv Detail & Related papers (2019-11-23T02:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.