Nonclassical correlated deterministic single-photon pairs for a trapped
atom in bimodal cavities
- URL: http://arxiv.org/abs/2204.07368v1
- Date: Fri, 15 Apr 2022 08:05:26 GMT
- Title: Nonclassical correlated deterministic single-photon pairs for a trapped
atom in bimodal cavities
- Authors: Zhong Peng and Yuangang Deng
- Abstract summary: Single photons and single-photon pairs, inherently nonclassical in their nature, are fundamental elements of quantum sciences and technologies.
We propose to realize the nonclassical correlated deterministic photon pairs at the single-photon level for a single atom trapped in bimodal cavities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single photons and single-photon pairs, inherently nonclassical in their
nature, are fundamental elements of quantum sciences and technologies. Here, we
propose to realize the nonclassical correlated deterministic photon pairs at
the single-photon level for a single atom trapped in bimodal cavities. It is
shown that the photon emissions for bimodal cavities exhibit a high single
photon purity and relatively large intracavity photon numbers, which are
ascribed to the combination of optical Stark shift enhanced energy-spectrum
anharmonicity and quantum interference suppressed two-photon excitation. Our
scheme generates photon-photon pairs with strong photon blockade for cavity
modes via constructing a highly tunable cavity-enhanced deterministic
parametric down-conversion process. Furthermore, we show that the
cross-correlation function between the two cavity modes vastly violates the
Cauchy-Schwarz inequality of the classical boundary, which unambiguously
demonstrates the nonclassicality of the single-photon pairs. Our result reveals
a prominent strategy to generate the high-quality two-mode single-photon
sources with strong nonclassical correlation, which could provide versatile
applications in distribution of quantum networks, long distance quantum
communication, and fundamental tests of quantum physics.
Related papers
- Harnessing spontaneous emission of correlated photon pairs from ladder-type giant atoms [5.498509152557573]
We show that a ladder-type three-level giant atom spontaneously emits strongly correlated photon pairs with high efficiency.
By encoding local phases into the optimal coupling sequence, directional two-photon correlated transfer can be achieved.
Such correlated photon pairs have great potential applications for quantum information processing.
arXiv Detail & Related papers (2024-06-18T09:03:00Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Violation of Bell inequality by photon scattering on a two-level emitter [4.810881229568956]
Entanglement, the non-local correlations present in quantum systems, is a curious feature of quantum mechanics and the fuel of quantum technology.
We show how a single two-level emitter deterministically coupled to light in a nanophotonic waveguide is used to realize genuine photonic quantum entanglement for excitation at the single photon level.
arXiv Detail & Related papers (2023-06-22T11:01:24Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Probing many-body correlations using quantum-cascade correlation
spectroscopy [0.0]
The radiative quantum cascade, i.e. the consecutive emission of photons from a ladder of energy levels, is of fundamental importance in quantum optics.
Here, we use exciton polaritons to explore the cascaded emission of photons in the regime where individual transitions of the ladder are not resolved.
Remarkably, the measured photon-photon correlations exhibit a strong dependence on the polariton energy, and therefore on the underlying polaritonic interaction strength.
arXiv Detail & Related papers (2022-12-18T09:51:12Z) - Strong single-photon to two-photon bundles emission in spin-1
Jaynes-Cummings model [3.230778132936486]
We study the nonclassical photon emission in a single spin-1 atom coupled to an optical cavity with constructing a spin-1 Jaynes-Cummings model.
The photon emission exhibit high-quality single photon and two-photon bundles properties with large photon numbers in the cavity and atom driven cases.
arXiv Detail & Related papers (2022-09-27T13:52:41Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Two-photon spontaneous emission in atomically thin plasmonic
nanostructures [0.0]
Two-photon states are key quantum assets, but achieving them in individual emitters is challenging.
We demonstrate that atomically thin plasmonic nanostructures can harness two-photon spontaneous emission.
This paves the way to an alternative efficient source of light-matter entanglement for on-chip quantum information processing and free-space quantum communications.
arXiv Detail & Related papers (2020-06-26T21:31:51Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.