A Deep Learning Approach to Predict Blood Pressure from PPG Signals
- URL: http://arxiv.org/abs/2108.00099v1
- Date: Fri, 30 Jul 2021 22:45:34 GMT
- Title: A Deep Learning Approach to Predict Blood Pressure from PPG Signals
- Authors: Ali Tazarv, Marco Levorato
- Abstract summary: Blood Pressure (BP) is one of the four primary vital signs indicating the status of the body's vital (life-sustaining) functions.
We propose an advanced data-driven approach that uses a three-layer deep neural network to estimate BP based on PPG signals.
- Score: 10.028103259763352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blood Pressure (BP) is one of the four primary vital signs indicating the
status of the body's vital (life-sustaining) functions. BP is difficult to
continuously monitor using a sphygmomanometer (i.e. a blood pressure cuff),
especially in everyday-setting. However, other health signals which can be
easily and continuously acquired, such as photoplethysmography (PPG), show some
similarities with the Aortic Pressure waveform. Based on these similarities, in
recent years several methods were proposed to predict BP from the PPG signal.
Building on these results, we propose an advanced personalized data-driven
approach that uses a three-layer deep neural network to estimate BP based on
PPG signals. Different from previous work, the proposed model analyzes the PPG
signal in time-domain and automatically extracts the most critical features for
this specific application, then uses a variation of recurrent neural networks
called Long-Short-Term-Memory (LSTM) to map the extracted features to the BP
value associated with that time window. Experimental results on two separate
standard hospital datasets, yielded absolute errors mean and absolute error
standard deviation for systolic and diastolic BP values outperforming prior
works.
Related papers
- A Multi-scenario Attention-based Generative Model for Personalized Blood Pressure Time Series Forecasting [6.311504297463515]
Continuous blood pressure (BP) monitoring is essential for timely diagnosis and intervention in critical care settings.
In this work, we propose a personalized BP forecasting model mainly using electrocardiogram (ECG) and photoplethysmogram ( photoplethysmogram) signals.
Experiments are conducted on datasets collected from three diverse scenarios with BP measurements from 60 subjects total.
arXiv Detail & Related papers (2024-09-07T04:24:15Z) - Exploring the limitations of blood pressure estimation using the photoplethysmography signal [0.0]
Photoplemography (N- Siamese) and Invasive Arterial Blood Pressure (N-IABP) signals are compared.
N-IABP signals meet with AAMI standards for both Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP)
Our findings highlight the potential and limitations of employing PPG for BP estimation.
arXiv Detail & Related papers (2024-04-09T14:08:23Z) - Belief Propagation Decoding of Quantum LDPC Codes with Guided Decimation [55.8930142490617]
We propose a decoder for QLDPC codes based on BP guided decimation (BPGD)
BPGD significantly reduces the BP failure rate due to non-convergence.
arXiv Detail & Related papers (2023-12-18T05:58:07Z) - A Theoretical View of Linear Backpropagation and Its Convergence [55.69505060636719]
Backpropagation (BP) is widely used for calculating gradients in deep neural networks (DNNs)
Recently, a linear variant of BP named LinBP was introduced for generating more transferable adversarial examples for performing black-box attacks.
We provide theoretical analyses on LinBP in neural-network-involved learning tasks, including adversarial attack and model training.
arXiv Detail & Related papers (2021-12-21T07:18:00Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Ambulatory blood pressure monitoring versus office blood pressure
measurement: Are there sex differences? [55.41644538483948]
Office Blood Pressure Measurement (OBP) is a technique performed in-office with the sphygmomanometer, while Ambulatory Blood Pressure Monitoring (ABPM) is a technique that measures blood pressure during 24h.
The aim of this study is to examine the possible influence of sex on the discrepancies between OBP and ABPM in 872 subjects with known or suspected hypertension.
arXiv Detail & Related papers (2021-06-04T10:09:44Z) - Assessment of deep learning based blood pressure prediction from PPG and
rPPG signals [2.624902795082451]
This work aims to analyze the PPG- and r-based BP prediction error with respect to the underlying data distribution.
We train established neural network (NN) architectures and derive an appropriate parameterization of input segments drawn from continuous PPG signals.
Second, we apply this parameterization to a larger PPG dataset and train NNs to predict BP.
Third, we use transfer learning to train the NNs for r-based BP prediction. The resulting performances are similar to the PPG-only case.
arXiv Detail & Related papers (2021-04-15T15:56:58Z) - HiPPO: Recurrent Memory with Optimal Polynomial Projections [93.3537706398653]
We introduce a general framework (HiPPO) for the online compression of continuous signals and discrete time series by projection onto bases.
Given a measure that specifies the importance of each time step in the past, HiPPO produces an optimal solution to a natural online function approximation problem.
This formal framework yields a new memory update mechanism (HiPPO-LegS) that scales through time to remember all history, avoiding priors on the timescale.
arXiv Detail & Related papers (2020-08-17T23:39:33Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - Estimating Blood Pressure from Photoplethysmogram Signal and Demographic
Features using Machine Learning Techniques [0.0]
Hypertension is a potentially unsafe health ailment, which can be indicated directly from the Blood pressure (BP)
Continuous monitoring of BP is very important; however, BP measurements are discrete and uncomfortable to the user.
To address this need, a cuffless, continuous and a non-invasive BP measurement system is proposed.
arXiv Detail & Related papers (2020-05-07T09:45:02Z) - PPG2ABP: Translating Photoplethysmogram (PPG) Signals to Arterial Blood
Pressure (ABP) Waveforms using Fully Convolutional Neural Networks [1.0045192779791103]
We develop a method to predict the continuous arterial blood pressure (ABP) waveform through a non-invasive approach using photoplethysmogram signals.
We present, PPG2ABP, a deep learning based method, that manages to predict the continuous ABP waveform from the input PPG signal, with a mean absolute error of 4.604 mmHg.
The more astounding success of PPG2ABP turns out to be that the computed values of DBP, MAP and SBP from the predicted ABP waveform outperforms the existing works under several metrics.
arXiv Detail & Related papers (2020-05-04T17:22:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.