Deep Feature Tracker: A Novel Application for Deep Convolutional Neural
Networks
- URL: http://arxiv.org/abs/2108.00105v1
- Date: Fri, 30 Jul 2021 23:24:29 GMT
- Title: Deep Feature Tracker: A Novel Application for Deep Convolutional Neural
Networks
- Authors: Mostafa Parchami, Saif Iftekar Sayed
- Abstract summary: We propose a novel and unified deep learning-based approach that can learn how to track features reliably.
The proposed network dubbed as Deep-PT consists of a tracker network which is a convolutional neural network cross-correlation.
The network is trained using multiple datasets due to the lack of specialized dataset for feature tracking datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Feature tracking is the building block of many applications such as visual
odometry, augmented reality, and target tracking. Unfortunately, the
state-of-the-art vision-based tracking algorithms fail in surgical images due
to the challenges imposed by the nature of such environments. In this paper, we
proposed a novel and unified deep learning-based approach that can learn how to
track features reliably as well as learn how to detect such reliable features
for tracking purposes. The proposed network dubbed as Deep-PT, consists of a
tracker network which is a convolutional neural network simulating
cross-correlation in terms of deep learning and two fully connected networks
that operate on the output of intermediate layers of the tracker to detect
features and predict trackability of the detected points. The ability to detect
features based on the capabilities of the tracker distinguishes the proposed
method from previous algorithms used in this area and improves the robustness
of the algorithms against dynamics of the scene. The network is trained using
multiple datasets due to the lack of specialized dataset for feature tracking
datasets and extensive comparisons are conducted to compare the accuracy of
Deep-PT against recent pixel tracking algorithms. As the experiments suggest,
the proposed deep architecture deliberately learns what to track and how to
track and outperforms the state-of-the-art methods.
Related papers
- SSP-GNN: Learning to Track via Bilevel Optimization [3.1889516673296807]
We propose a graph-based tracking formulation for multi-object tracking (MOT)
Our method applies a successive shortest paths (SSP) algorithm to a tracking graph defined over a batch of frames.
The edge costs in this tracking graph are computed via a message-passing network, a graph neural network (GNN) variant.
arXiv Detail & Related papers (2024-07-05T07:23:51Z) - Lightweight Monocular Depth Estimation with an Edge Guided Network [34.03711454383413]
We present a novel lightweight Edge Guided Depth Estimation Network (EGD-Net)
In particular, we start out with a lightweight encoder-decoder architecture and embed an edge guidance branch.
In order to aggregate the context information and edge attention features, we design a transformer-based feature aggregation module.
arXiv Detail & Related papers (2022-09-29T14:45:47Z) - Minkowski Tracker: A Sparse Spatio-Temporal R-CNN for Joint Object
Detection and Tracking [53.64390261936975]
We present Minkowski Tracker, a sparse-temporal R-CNN that jointly solves object detection and tracking problems.
Inspired by region-based CNN (R-CNN), we propose to track motion as a second stage of the object detector R-CNN.
We show in large-scale experiments that the overall performance gain of our method is due to four factors.
arXiv Detail & Related papers (2022-08-22T04:47:40Z) - A Bayesian Detect to Track System for Robust Visual Object Tracking and
Semi-Supervised Model Learning [1.7268829007643391]
We ad-dress problems in a Bayesian tracking and detection framework parameterized by neural network outputs.
We propose a particle filter-based approximate sampling algorithm for tracking object state estimation.
Based on our particle filter inference algorithm, a semi-supervised learn-ing algorithm is utilized for learning tracking network on intermittent labeled frames.
arXiv Detail & Related papers (2022-05-05T00:18:57Z) - Correlation-Aware Deep Tracking [83.51092789908677]
We propose a novel target-dependent feature network inspired by the self-/cross-attention scheme.
Our network deeply embeds cross-image feature correlation in multiple layers of the feature network.
Our model can be flexibly pre-trained on abundant unpaired images, leading to notably faster convergence than the existing methods.
arXiv Detail & Related papers (2022-03-03T11:53:54Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Coarse-to-Fine Object Tracking Using Deep Features and Correlation
Filters [2.3526458707956643]
This paper presents a novel deep learning tracking algorithm.
We exploit the generalization ability of deep features to coarsely estimate target translation.
Then, we capitalize on the discriminative power of correlation filters to precisely localize the tracked object.
arXiv Detail & Related papers (2020-12-23T16:43:21Z) - Learning to associate detections for real-time multiple object tracking [0.0]
This study investigates the use of artificial neural networks to learn a similarity function that can be used among detections.
The proposed tracker matches the results obtained by state-of-the-art methods, it has run 58% faster than a recent and similar method, used as baseline.
arXiv Detail & Related papers (2020-07-12T17:08:41Z) - Object Tracking through Residual and Dense LSTMs [67.98948222599849]
Deep learning-based trackers based on LSTMs (Long Short-Term Memory) recurrent neural networks have emerged as a powerful alternative.
DenseLSTMs outperform Residual and regular LSTM, and offer a higher resilience to nuisances.
Our case study supports the adoption of residual-based RNNs for enhancing the robustness of other trackers.
arXiv Detail & Related papers (2020-06-22T08:20:17Z) - Robust Visual Object Tracking with Two-Stream Residual Convolutional
Networks [62.836429958476735]
We propose a Two-Stream Residual Convolutional Network (TS-RCN) for visual tracking.
Our TS-RCN can be integrated with existing deep learning based visual trackers.
To further improve the tracking performance, we adopt a "wider" residual network ResNeXt as its feature extraction backbone.
arXiv Detail & Related papers (2020-05-13T19:05:42Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.