Learning to associate detections for real-time multiple object tracking
- URL: http://arxiv.org/abs/2007.06041v1
- Date: Sun, 12 Jul 2020 17:08:41 GMT
- Title: Learning to associate detections for real-time multiple object tracking
- Authors: Michel Meneses, Leonardo Matos, Bruno Prado, Andr\'e de Carvalho and
Hendrik Macedo
- Abstract summary: This study investigates the use of artificial neural networks to learn a similarity function that can be used among detections.
The proposed tracker matches the results obtained by state-of-the-art methods, it has run 58% faster than a recent and similar method, used as baseline.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the recent advances in the object detection research field,
tracking-by-detection has become the leading paradigm adopted by multi-object
tracking algorithms. By extracting different features from detected objects,
those algorithms can estimate the objects' similarities and association
patterns along successive frames. However, since similarity functions applied
by tracking algorithms are handcrafted, it is difficult to employ them in new
contexts. In this study, it is investigated the use of artificial neural
networks to learning a similarity function that can be used among detections.
During training, the networks were introduced to correct and incorrect
association patterns, sampled from a pedestrian tracking data set. For such,
different motion and appearance features combinations have been explored.
Finally, a trained network has been inserted into a multiple-object tracking
framework, which has been assessed on the MOT Challenge benchmark. Throughout
the experiments, the proposed tracker matched the results obtained by
state-of-the-art methods, it has run 58\% faster than a recent and similar
method, used as baseline.
Related papers
- SeMoLi: What Moves Together Belongs Together [51.72754014130369]
We tackle semi-supervised object detection based on motion cues.
Recent results suggest that motion-based clustering methods can be used to pseudo-label instances of moving objects.
We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner.
arXiv Detail & Related papers (2024-02-29T18:54:53Z) - Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking [55.13878429987136]
We propose a simple yet effective two-stage feature learning paradigm to jointly learn single-shot and multi-shot features for different targets.
Our method has achieved significant improvements on MOT17 and MOT20 datasets while reaching state-of-the-art performance on DanceTrack dataset.
arXiv Detail & Related papers (2023-11-17T08:17:49Z) - Spatio-Temporal Point Process for Multiple Object Tracking [30.041104276095624]
Multiple Object Tracking (MOT) focuses on modeling the relationship of detected objects among consecutive frames and merge them into different trajectories.
We propose a novel framework that can effectively predict and mask-out noisy and confusing detection results before associating objects into trajectories.
arXiv Detail & Related papers (2023-02-05T18:14:08Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - QDTrack: Quasi-Dense Similarity Learning for Appearance-Only Multiple
Object Tracking [73.52284039530261]
We present Quasi-Dense Similarity Learning, which densely samples hundreds of object regions on a pair of images for contrastive learning.
We find that the resulting distinctive feature space admits a simple nearest neighbor search at inference time for object association.
We show that our similarity learning scheme is not limited to video data, but can learn effective instance similarity even from static input.
arXiv Detail & Related papers (2022-10-12T15:47:36Z) - A Bayesian Detect to Track System for Robust Visual Object Tracking and
Semi-Supervised Model Learning [1.7268829007643391]
We ad-dress problems in a Bayesian tracking and detection framework parameterized by neural network outputs.
We propose a particle filter-based approximate sampling algorithm for tracking object state estimation.
Based on our particle filter inference algorithm, a semi-supervised learn-ing algorithm is utilized for learning tracking network on intermittent labeled frames.
arXiv Detail & Related papers (2022-05-05T00:18:57Z) - STURE: Spatial-Temporal Mutual Representation Learning for Robust Data
Association in Online Multi-Object Tracking [7.562844934117318]
The proposed approach is capable of extracting more distinguishing detection and sequence representations.
It is applied to the public MOT challenge benchmarks and performs well compared with various state-of-the-art online MOT trackers.
arXiv Detail & Related papers (2022-01-18T08:52:40Z) - Deep Feature Tracker: A Novel Application for Deep Convolutional Neural
Networks [0.0]
We propose a novel and unified deep learning-based approach that can learn how to track features reliably.
The proposed network dubbed as Deep-PT consists of a tracker network which is a convolutional neural network cross-correlation.
The network is trained using multiple datasets due to the lack of specialized dataset for feature tracking datasets.
arXiv Detail & Related papers (2021-07-30T23:24:29Z) - Learning to Track with Object Permanence [61.36492084090744]
We introduce an end-to-end trainable approach for joint object detection and tracking.
Our model, trained jointly on synthetic and real data, outperforms the state of the art on KITTI, and MOT17 datasets.
arXiv Detail & Related papers (2021-03-26T04:43:04Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
We present a robust estimator for fitting multiple parametric models of the same form to noisy measurements.
In contrast to previous works, which resorted to hand-crafted search strategies for multiple model detection, we learn the search strategy from data.
For self-supervised learning of the search, we evaluate the proposed algorithm on multi-homography estimation and demonstrate an accuracy that is superior to state-of-the-art methods.
arXiv Detail & Related papers (2020-01-08T17:37:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.