Multiplex Graph Networks for Multimodal Brain Network Analysis
- URL: http://arxiv.org/abs/2108.00158v1
- Date: Sat, 31 Jul 2021 06:01:29 GMT
- Title: Multiplex Graph Networks for Multimodal Brain Network Analysis
- Authors: Zhaoming Kong, Lichao Sun, Hao Peng, Liang Zhan, Yong Chen, Lifang He
- Abstract summary: We propose MGNet, a simple and effective multiplex graph convolutional network (GCN) model for multimodal brain network analysis.
We conduct classification task on two challenging real-world datasets (HIV and Bipolar disorder)
- Score: 30.195666008281915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose MGNet, a simple and effective multiplex graph
convolutional network (GCN) model for multimodal brain network analysis. The
proposed method integrates tensor representation into the multiplex GCN model
to extract the latent structures of a set of multimodal brain networks, which
allows an intuitive 'grasping' of the common space for multimodal data.
Multimodal representations are then generated with multiplex GCNs to capture
specific graph structures. We conduct classification task on two challenging
real-world datasets (HIV and Bipolar disorder), and the proposed MGNet
demonstrates state-of-the-art performance compared to competitive benchmark
methods. Apart from objective evaluations, this study may bear special
significance upon network theory to the understanding of human connectome in
different modalities. The code is available at
https://github.com/ZhaomingKong/MGNets.
Related papers
- Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
We develop a graph Poisson factor analysis (GPFA) which provides analytic conditional posteriors to improve the inference accuracy.
We also extend GPFA to a multi-stochastic-layer version named graph Poisson gamma belief network (GPGBN) to capture the hierarchical document relationships at multiple semantic levels.
Our models can extract high-quality hierarchical latent document representations and achieve promising performance on various graph analytic tasks.
arXiv Detail & Related papers (2024-10-13T02:22:14Z) - MTS2Graph: Interpretable Multivariate Time Series Classification with
Temporal Evolving Graphs [1.1756822700775666]
We introduce a new framework for interpreting time series data by extracting and clustering the input representative patterns.
We run experiments on eight datasets of the UCR/UEA archive, along with HAR and PAM datasets.
arXiv Detail & Related papers (2023-06-06T16:24:27Z) - Attributed Multi-order Graph Convolutional Network for Heterogeneous
Graphs [29.618952407794783]
We propose anAttributed Multi-Order Graph Convolutional Network (AMOGCN), which automatically studies meta-paths containing multi-hop neighbors.
AMOGCN gains superior semi-supervised classification performance compared with state-of-the-art competitors.
arXiv Detail & Related papers (2023-04-13T08:31:16Z) - Multi-view Graph Convolutional Networks with Differentiable Node
Selection [29.575611350389444]
We propose a framework dubbed Multi-view Graph Convolutional Network with Differentiable Node Selection (MGCN-DNS)
MGCN-DNS accepts multi-channel graph-structural data as inputs and aims to learn more robust graph fusion through a differentiable neural network.
The effectiveness of the proposed method is verified by rigorous comparisons with considerable state-of-the-art approaches.
arXiv Detail & Related papers (2022-12-09T21:48:36Z) - Deep Image Clustering with Contrastive Learning and Multi-scale Graph
Convolutional Networks [58.868899595936476]
This paper presents a new deep clustering approach termed image clustering with contrastive learning and multi-scale graph convolutional networks (IcicleGCN)
Experiments on multiple image datasets demonstrate the superior clustering performance of IcicleGCN over the state-of-the-art.
arXiv Detail & Related papers (2022-07-14T19:16:56Z) - Pay Attention to Relations: Multi-embeddings for Attributed Multiplex
Networks [0.0]
RAHMeN is a novel unified relation-aware embedding framework for attributed heterogeneous multiplex networks.
Our model incorporates node attributes, motif-based features, relation-based GCN approaches, and relational self-attention to learn embeddings of nodes.
We evaluate our model on four real-world datasets from Amazon, Twitter, YouTube, and Tissue PPIs in both transductive and inductive settings.
arXiv Detail & Related papers (2022-03-03T18:31:29Z) - Multiplex Bipartite Network Embedding using Dual Hypergraph
Convolutional Networks [16.62391694987056]
We develop an unsupervised Dual HyperGraph Convolutional Network (DualHGCN) model scalably transforms the multiplex bipartite network into two sets of homogeneous hypergraphs.
We benchmark DualHGCN using four real-world datasets on link prediction and node classification tasks.
arXiv Detail & Related papers (2021-02-12T07:20:36Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
We propose a multi-semantic metapath (MSM) model for large scale heterogeneous representation learning.
Specifically, we generate multi-semantic metapath-based random walks to construct the heterogeneous neighborhood to handle the unbalanced distributions.
We conduct systematical evaluations for the proposed framework on two challenging datasets: Amazon and Alibaba.
arXiv Detail & Related papers (2020-07-19T22:50:20Z) - A Novel Graph-based Multi-modal Fusion Encoder for Neural Machine
Translation [131.33610549540043]
We propose a novel graph-based multi-modal fusion encoder for NMT.
We first represent the input sentence and image using a unified multi-modal graph.
We then stack multiple graph-based multi-modal fusion layers that iteratively perform semantic interactions to learn node representations.
arXiv Detail & Related papers (2020-07-17T04:06:09Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
We propose a novel learning scheme for unpaired cross-modality image segmentation.
In our method, we heavily reuse network parameters, by sharing all convolutional kernels across CT and MRI.
We have extensively validated our approach on two multi-class segmentation problems.
arXiv Detail & Related papers (2020-01-06T20:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.