Multi-view Graph Convolutional Networks with Differentiable Node
Selection
- URL: http://arxiv.org/abs/2212.05124v2
- Date: Sun, 13 Aug 2023 07:18:29 GMT
- Title: Multi-view Graph Convolutional Networks with Differentiable Node
Selection
- Authors: Zhaoliang Chen, Lele Fu, Shunxin Xiao, Shiping Wang, Claudia Plant,
Wenzhong Guo
- Abstract summary: We propose a framework dubbed Multi-view Graph Convolutional Network with Differentiable Node Selection (MGCN-DNS)
MGCN-DNS accepts multi-channel graph-structural data as inputs and aims to learn more robust graph fusion through a differentiable neural network.
The effectiveness of the proposed method is verified by rigorous comparisons with considerable state-of-the-art approaches.
- Score: 29.575611350389444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-view data containing complementary and consensus information can
facilitate representation learning by exploiting the intact integration of
multi-view features. Because most objects in real world often have underlying
connections, organizing multi-view data as heterogeneous graphs is beneficial
to extracting latent information among different objects. Due to the powerful
capability to gather information of neighborhood nodes, in this paper, we apply
Graph Convolutional Network (GCN) to cope with heterogeneous-graph data
originating from multi-view data, which is still under-explored in the field of
GCN. In order to improve the quality of network topology and alleviate the
interference of noises yielded by graph fusion, some methods undertake sorting
operations before the graph convolution procedure. These GCN-based methods
generally sort and select the most confident neighborhood nodes for each
vertex, such as picking the top-k nodes according to pre-defined confidence
values. Nonetheless, this is problematic due to the non-differentiable sorting
operators and inflexible graph embedding learning, which may result in blocked
gradient computations and undesired performance. To cope with these issues, we
propose a joint framework dubbed Multi-view Graph Convolutional Network with
Differentiable Node Selection (MGCN-DNS), which is constituted of an adaptive
graph fusion layer, a graph learning module and a differentiable node selection
schema. MGCN-DNS accepts multi-channel graph-structural data as inputs and aims
to learn more robust graph fusion through a differentiable neural network. The
effectiveness of the proposed method is verified by rigorous comparisons with
considerable state-of-the-art approaches in terms of multi-view semi-supervised
classification tasks.
Related papers
- Contrastive Graph Representation Learning with Adversarial Cross-view Reconstruction and Information Bottleneck [5.707725771108279]
We propose an effective Contrastive Graph Representation Learning with Adversarial Cross-view Reconstruction and Information Bottleneck (CGRL) for node classification.
Our method significantly outperforms existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-01T05:45:21Z) - Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
In representation learning on graph-structured data, many popular graph neural networks (GNNs) fail to capture long-range dependencies.
This paper proposes a novel graph learning framework called the graph convolutional network with self-attention (GCN-SA)
The proposed scheme exhibits an exceptional generalization capability in node-level representation learning.
arXiv Detail & Related papers (2024-03-06T05:00:31Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Learnable Graph Convolutional Network and Feature Fusion for Multi-view
Learning [30.74535386745822]
This paper proposes a joint deep learning framework called Learnable Graph Convolutional Network and Feature Fusion (LGCN-FF)
It consists of two stages: feature fusion network and learnable graph convolutional network.
The proposed LGCN-FF is validated to be superior to various state-of-the-art methods in multi-view semi-supervised classification.
arXiv Detail & Related papers (2022-11-16T19:07:12Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - Breaking the Limit of Graph Neural Networks by Improving the
Assortativity of Graphs with Local Mixing Patterns [19.346133577539394]
Graph neural networks (GNNs) have achieved tremendous success on multiple graph-based learning tasks.
We focus on transforming the input graph into a computation graph which contains both proximity and structural information.
We show that adaptively choosing between structure and proximity leads to improved performance under diverse mixing.
arXiv Detail & Related papers (2021-06-11T19:18:34Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.