A Plant Root System Algorithm Based on Swarm Intelligence for
One-dimensional Biomedical Signal Feature Engineering
- URL: http://arxiv.org/abs/2108.00214v1
- Date: Sat, 31 Jul 2021 11:00:32 GMT
- Title: A Plant Root System Algorithm Based on Swarm Intelligence for
One-dimensional Biomedical Signal Feature Engineering
- Authors: Rui Gong, Kazunori Hase
- Abstract summary: This study proposes a feature extraction algorithm based on group intelligence which we call a Plant Root System (PRS) algorithm.
It is expected that more biomedical signals can be applied to clinical diagnosis using the proposed algorithm.
- Score: 1.52292571922932
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To date, very few biomedical signals have transitioned from research
applications to clinical applications. This is largely due to the lack of trust
in the diagnostic ability of non-stationary signals. To reach the level of
clinical diagnostic application, classification using high-quality signal
features is necessary. While there has been considerable progress in machine
learning in recent years, especially deep learning, progress has been quite
limited in the field of feature engineering. This study proposes a feature
extraction algorithm based on group intelligence which we call a Plant Root
System (PRS) algorithm. Importantly, the correlation between features produced
by this PRS algorithm and traditional features is low, and the accuracy of
several widely-used classifiers was found to be substantially improved with the
addition of PRS features. It is expected that more biomedical signals can be
applied to clinical diagnosis using the proposed algorithm.
Related papers
- Now and Future of Artificial Intelligence-based Signet Ring Cell
Diagnosis: A Survey [24.605310211285392]
Signet ring cells (SRCs) are associated with high peripheral metastasis rate and dismal survival.
Deep learning has received increasing attention to assist pathologists in improving the diagnostic efficiency and accuracy.
This paper provides a survey on SRC analysis driven by deep learning from 2008 to August 2023.
arXiv Detail & Related papers (2023-11-16T09:20:43Z) - An Explainable Deep Learning-Based Method For Schizophrenia Diagnosis Using Generative Data-Augmentation [0.3222802562733786]
We leverage a deep learning-based method for the automatic diagnosis of schizophrenia using EEG brain recordings.
This approach utilizes generative data augmentation, a powerful technique that enhances the accuracy of the diagnosis.
arXiv Detail & Related papers (2023-10-25T12:55:16Z) - A New Deep Learning and XAI-Based Algorithm for Features Selection in
Genomics [5.787117733071415]
The paper proposes a novel algorithm to perform Feature Selection on genomic-scale data.
Results of the application on a Chronic Lymphocytic Leukemia dataset evidence the effectiveness of the algorithm.
arXiv Detail & Related papers (2023-03-29T16:44:13Z) - Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for
Attribute-Based Medical Image Diagnosis [42.624671531003166]
We introduce a hybrid neuro-probabilistic reasoning algorithm for verifiable attribute-based medical image diagnosis.
We have successfully applied our hybrid reasoning algorithm to two challenging medical image diagnosis tasks.
arXiv Detail & Related papers (2022-08-19T12:06:46Z) - Future Artificial Intelligence tools and perspectives in medicine [1.7532045941271799]
Currently, limited management of cancers benefits from artificial intelligence, mostly related to a computer-aided diagnosis that avoids a biopsy analysis that presents additional risks and costs.
This review explores the progress of AI-based radiomic tools for clinical applications with a brief description of necessary technical steps.
arXiv Detail & Related papers (2022-06-04T11:27:43Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Automatic detection of abnormal EEG signals using wavelet feature
extraction and gradient boosting decision tree [2.924868086534434]
We present an automatic binary classification framework for brain signals in multichannel EEG recordings.
We propose a novel method to reduce the dimension of the feature space without compromising the quality of the extracted features.
CatBoost achieves the binary classification accuracy of 87.68%, and outperforms state-of-the-art techniques on the same dataset.
arXiv Detail & Related papers (2020-12-18T03:36:52Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.