論文の概要: A Machine-Learning-Based Direction-of-Origin Filter for the
Identification of Radio Frequency Interference in the Search for
Technosignatures
- arxiv url: http://arxiv.org/abs/2108.00559v1
- Date: Wed, 28 Jul 2021 20:22:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-08 11:05:37.267812
- Title: A Machine-Learning-Based Direction-of-Origin Filter for the
Identification of Radio Frequency Interference in the Search for
Technosignatures
- Title(参考訳): テクノシグナチャ探索における周波数干渉同定のための機械学習に基づく方向推定フィルタ
- Authors: Pavlo Pinchuk and Jean-Luc Margot
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は、既存のフィルタに対して有望な補完を提供する。
我々は、あるスキャンで検出された信号が別のスキャンに存在するかどうかを判定できるCNNを設計し、訓練した。
このCNNベースのDoOフィルタは、ベースライン2D相関モデルと既存のDoOフィルタの両方を、さまざまなメトリクスで上回る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radio frequency interference (RFI) mitigation remains a major challenge in
the search for radio technosignatures. Typical mitigation strategies include a
direction-of-origin (DoO) filter, where a signal is classified as RFI if it is
detected in multiple directions on the sky. These classifications generally
rely on estimates of signal properties, such as frequency and frequency drift
rate. Convolutional neural networks (CNNs) offer a promising complement to
existing filters because they can be trained to analyze dynamic spectra
directly, instead of relying on inferred signal properties. In this work, we
compiled several data sets consisting of labeled pairs of images of dynamic
spectra, and we designed and trained a CNN that can determine whether or not a
signal detected in one scan is also present in another scan. This CNN-based DoO
filter outperforms both a baseline 2D correlation model as well as existing DoO
filters over a range of metrics, with precision and recall values of 99.15% and
97.81%, respectively. We found that the CNN reduces the number of signals
requiring visual inspection after the application of traditional DoO filters by
a factor of 6-16 in nominal situations.
- Abstract(参考訳): 無線周波数干渉(rfi)緩和は、無線技術における重要な課題である。
典型的な緩和戦略には、方向オブオリジン(DoO)フィルタがあり、複数の方向で検出された場合、信号はRFIに分類される。
これらの分類は一般に周波数や周波数ドリフト率などの信号特性の推定に依存する。
畳み込みニューラルネットワーク(cnns)は、推定された信号特性に頼るのではなく、動的スペクトルを直接分析するように訓練できるため、既存のフィルタを補完する。
本研究では,動的スペクトルのラベル付きペア画像からなるデータセットをコンパイルし,あるスキャンで検出された信号が他のスキャンでも存在しているかどうかを判断するcnnの設計と訓練を行った。
このCNNベースのDoOフィルタは、ベースライン2D相関モデルと既存のDoOフィルタの両方で、それぞれ99.15%と97.81%の精度とリコール値を持つ。
従来の doo フィルタの適用により, cnn は可視検査を必要とする信号数を 6-16 倍に削減できることが判明した。
関連論文リスト
- Dual-Frequency Filtering Self-aware Graph Neural Networks for Homophilic and Heterophilic Graphs [60.82508765185161]
我々は、Dual-Frequency Filtering Self-Aware Graph Neural Networks (DFGNN)を提案する。
DFGNNは低域通過フィルタと高域通過フィルタを統合し、滑らかで詳細な位相的特徴を抽出する。
フィルター比を動的に調整し、ホモフィルグラフとヘテロフィルグラフの両方に対応する。
論文 参考訳(メタデータ) (2024-11-18T04:57:05Z) - FilterNet: Harnessing Frequency Filters for Time Series Forecasting [34.83702192033196]
FilterNetは、時系列信号の特定の成分を選択的に通過または減衰させることにより、重要な情報的時間パターンを抽出するために、我々の提案した学習可能な周波数フィルタ上に構築されている。
2つのフィルタを備えることで、FilterNetは、時系列文学で広く採用されている線形およびアテンションマッピングを概ねサロゲートすることができる。
論文 参考訳(メタデータ) (2024-11-03T16:20:41Z) - RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
本稿では、新しいデータ駆動手法を用いて、高周波信号における干渉拒否の重大な問題に対処する。
まず、干渉除去アルゴリズムの開発と解析の基礎となる洞察に富んだ信号モデルを提案する。
第2に,さまざまなRF信号とコードテンプレートを備えた公開データセットであるRF Challengeを紹介する。
第3に,UNetやWaveNetなどのアーキテクチャにおいて,新しいAIに基づく拒絶アルゴリズムを提案し,その性能を8種類の信号混合タイプで評価する。
論文 参考訳(メタデータ) (2024-09-13T13:53:41Z) - Modulation Classification Through Deep Learning Using Resolution
Transformed Spectrograms [3.9511559419116224]
畳み込みニューラルネットワーク(CNN)の近代的アーキテクチャを用いた自動変調分類(AMC)手法を提案する。
我々は、受信したI/Qデータから99.61%の計算負荷削減と8倍の高速変換をもたらす分光器の分解能変換を行う。
この性能は、SqueezeNet、Resnet-50、InceptionResnet-V2、Inception-V3、VGG-16、Densenet-201といった既存のCNNモデルで評価される。
論文 参考訳(メタデータ) (2023-06-06T16:14:15Z) - A Deep Neural Network Based Reverse Radio Spectrogram Search Algorithm [0.0]
ラジオスペクトログラムデータに注目するルックアライズな信号を探すために,高速かつモジュール化されたディープラーニングアルゴリズムを提案する。
このアルゴリズムは、元のラジオスペクトログラムデータのみを考慮し、類似した外観の信号を検索する。
論文 参考訳(メタデータ) (2023-02-24T04:28:46Z) - Faster Region-Based CNN Spectrum Sensing and Signal Identification in
Cluttered RF Environments [0.7734726150561088]
高速領域ベース畳み込みニューラルネットワーク(FRCNN)を1次元(1次元)信号処理と電磁スペクトルセンシングに最適化する。
その結果,本手法はローカライズ性能が向上し,2次元同値よりも高速であることがわかった。
論文 参考訳(メタデータ) (2023-02-20T09:35:13Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
空間、時間、周波数領域にわたる無線スペクトルのモニタリングは、5Gと6G以上の通信技術において重要な特徴となる。
本稿では,空間領域全体にわたる不規則分散計測を補間するGAN(Generative Adversarial Network)機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T22:25:10Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
可視データと熱データ間のメッセージ通信を促進するために,新しい動的モダリティ対応フィルタ生成モジュール(MFGNet)を提案する。
我々は、2つの独立ネットワークを持つ動的モダリティ対応フィルタを生成し、その可視フィルタとサーマルフィルタをそれぞれ、対応する入力特徴写像上で動的畳み込み演算を行う。
重閉塞,高速移動,外見による問題に対処するため,新たな方向認識型目標誘導型アテンション機構を活用することで,共同で局所的・グローバル検索を行うことを提案する。
論文 参考訳(メタデータ) (2021-07-22T03:10:51Z) - Message Passing in Graph Convolution Networks via Adaptive Filter Banks [81.12823274576274]
我々は BankGCN と呼ばれる新しいグラフ畳み込み演算子を提案する。
グラフ上のマルチチャネル信号をサブスペースに分解し、各サブスペース内の特定の情報を適応フィルタで処理する。
ベンチマークグラフデータセットの集合におけるグラフ分類における優れたパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-06-18T04:23:34Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
適応周波数応答フィルタを用いたグラフニューラルネットワークフレームワークAdaGNNを開発した。
提案手法の有効性を,様々なベンチマークデータセット上で実証的に検証した。
論文 参考訳(メタデータ) (2021-04-26T19:31:21Z) - Time-Frequency Analysis based Blind Modulation Classification for
Multiple-Antenna Systems [6.011027400738812]
ブラインド変調分類は、認知無線ネットワークを実装するための重要なステップである。
マルチインプット・マルチアウトプット(MIMO)技術は、軍事や民間の通信システムで広く使われている。
これらのシナリオでは、従来の可能性ベースのアプローチや特徴ベースのアプローチは適用できない。
論文 参考訳(メタデータ) (2020-04-01T12:27:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。