A Machine-Learning-Based Direction-of-Origin Filter for the
Identification of Radio Frequency Interference in the Search for
Technosignatures
- URL: http://arxiv.org/abs/2108.00559v1
- Date: Wed, 28 Jul 2021 20:22:39 GMT
- Title: A Machine-Learning-Based Direction-of-Origin Filter for the
Identification of Radio Frequency Interference in the Search for
Technosignatures
- Authors: Pavlo Pinchuk and Jean-Luc Margot
- Abstract summary: Convolutional neural networks (CNNs) offer a promising complement to existing filters.
We designed and trained a CNN that can determine whether or not a signal detected in one scan is also present in another scan.
This CNN-based DoO filter outperforms both a baseline 2D correlation model as well as existing DoO filters over a range of metrics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radio frequency interference (RFI) mitigation remains a major challenge in
the search for radio technosignatures. Typical mitigation strategies include a
direction-of-origin (DoO) filter, where a signal is classified as RFI if it is
detected in multiple directions on the sky. These classifications generally
rely on estimates of signal properties, such as frequency and frequency drift
rate. Convolutional neural networks (CNNs) offer a promising complement to
existing filters because they can be trained to analyze dynamic spectra
directly, instead of relying on inferred signal properties. In this work, we
compiled several data sets consisting of labeled pairs of images of dynamic
spectra, and we designed and trained a CNN that can determine whether or not a
signal detected in one scan is also present in another scan. This CNN-based DoO
filter outperforms both a baseline 2D correlation model as well as existing DoO
filters over a range of metrics, with precision and recall values of 99.15% and
97.81%, respectively. We found that the CNN reduces the number of signals
requiring visual inspection after the application of traditional DoO filters by
a factor of 6-16 in nominal situations.
Related papers
- FilterNet: Harnessing Frequency Filters for Time Series Forecasting [34.83702192033196]
FilterNet is built upon our proposed learnable frequency filters to extract key informative temporal patterns by selectively passing or attenuating certain components of time series signals.
equipped with the two filters, FilterNet can approximately surrogate the linear and attention mappings widely adopted in time series literature.
arXiv Detail & Related papers (2024-11-03T16:20:41Z) - RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
This paper addresses the critical problem of interference rejection in radio-frequency (RF) signals using a novel, data-driven approach.
First, we present an insightful signal model that serves as a foundation for developing and analyzing interference rejection algorithms.
Second, we introduce the RF Challenge, a publicly available dataset featuring diverse RF signals along with code templates.
Third, we propose novel AI-based rejection algorithms, specifically architectures like UNet and WaveNet, and evaluate their performance across eight different signal mixture types.
arXiv Detail & Related papers (2024-09-13T13:53:41Z) - Modulation Classification Through Deep Learning Using Resolution
Transformed Spectrograms [3.9511559419116224]
We propose a scheme for Automatic Modulation Classification (AMC) using modern architectures of Convolutional Neural Networks (CNN)
We perform resolution transformation of spectrograms that results up to 99.61% of computational load reduction and 8x faster conversion from the received I/Q data.
The performance is evaluated on existing CNN models including SqueezeNet, Resnet-50, InceptionResnet-V2, Inception-V3, VGG-16 and Densenet-201.
arXiv Detail & Related papers (2023-06-06T16:14:15Z) - A Deep Neural Network Based Reverse Radio Spectrogram Search Algorithm [0.0]
We present a fast and modular deep learning algorithm to search for lookalike signals of interest in radio spectrogram data.
We show that the algorithm retrieves signals with similar appearance, given only the original radio spectrogram data.
arXiv Detail & Related papers (2023-02-24T04:28:46Z) - Faster Region-Based CNN Spectrum Sensing and Signal Identification in
Cluttered RF Environments [0.7734726150561088]
We optimize a faster region-based convolutional neural network (FRCNN) for 1-dimensional (1D) signal processing and electromagnetic spectrum sensing.
Results show that our method has better localization performance, and is faster than the 2D equivalent.
arXiv Detail & Related papers (2023-02-20T09:35:13Z) - Filter-enhanced MLP is All You Need for Sequential Recommendation [89.0974365344997]
In online platforms, logged user behavior data is inevitable to contain noise.
We borrow the idea of filtering algorithms from signal processing that attenuates the noise in the frequency domain.
We propose textbfFMLP-Rec, an all-MLP model with learnable filters for sequential recommendation task.
arXiv Detail & Related papers (2022-02-28T05:49:35Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
We propose a new dynamic modality-aware filter generation module (named MFGNet) to boost the message communication between visible and thermal data.
We generate dynamic modality-aware filters with two independent networks. The visible and thermal filters will be used to conduct a dynamic convolutional operation on their corresponding input feature maps respectively.
To address issues caused by heavy occlusion, fast motion, and out-of-view, we propose to conduct a joint local and global search by exploiting a new direction-aware target-driven attention mechanism.
arXiv Detail & Related papers (2021-07-22T03:10:51Z) - Message Passing in Graph Convolution Networks via Adaptive Filter Banks [81.12823274576274]
We present a novel graph convolution operator, termed BankGCN.
It decomposes multi-channel signals on graphs into subspaces and handles particular information in each subspace with an adapted filter.
It achieves excellent performance in graph classification on a collection of benchmark graph datasets.
arXiv Detail & Related papers (2021-06-18T04:23:34Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
We develop a graph neural network framework AdaGNN with a well-smooth adaptive frequency response filter.
We empirically validate the effectiveness of the proposed framework on various benchmark datasets.
arXiv Detail & Related papers (2021-04-26T19:31:21Z) - Time-Frequency Analysis based Blind Modulation Classification for
Multiple-Antenna Systems [6.011027400738812]
Blind modulation classification is an important step to implement cognitive radio networks.
The multiple-input multiple-output (MIMO) technique is widely used in military and civil communication systems.
Traditional likelihood-based and feature-based approaches cannot be applied in these scenarios.
arXiv Detail & Related papers (2020-04-01T12:27:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.