A Deep Neural Network Based Reverse Radio Spectrogram Search Algorithm
- URL: http://arxiv.org/abs/2302.13854v2
- Date: Fri, 19 Jan 2024 02:19:29 GMT
- Title: A Deep Neural Network Based Reverse Radio Spectrogram Search Algorithm
- Authors: Peter Xiangyuan Ma, Steve Croft, Chris Lintott, Andrew P. V. Siemion
- Abstract summary: We present a fast and modular deep learning algorithm to search for lookalike signals of interest in radio spectrogram data.
We show that the algorithm retrieves signals with similar appearance, given only the original radio spectrogram data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern radio astronomy instruments generate vast amounts of data, and the
increasingly challenging radio frequency interference (RFI) environment
necessitates ever-more sophisticated RFI rejection algorithms. The "needle in a
haystack" nature of searches for transients and technosignatures requires us to
develop methods that can determine whether a signal of interest has unique
properties, or is a part of some larger set of pernicious RFI. In the past,
this vetting has required onerous manual inspection of very large numbers of
signals. In this paper we present a fast and modular deep learning algorithm to
search for lookalike signals of interest in radio spectrogram data. First, we
trained a B-Variational Autoencoder on signals returned by an energy detection
algorithm. We then adapted a positional embedding layer from classical
Transformer architecture to a embed additional metadata, which we demonstrate
using a frequency-based embedding. Next we used the encoder component of the
B-Variational Autoencoder to extract features from small (~ 715,Hz, with a
resolution of 2.79Hz per frequency bin) windows in the radio spectrogram. We
used our algorithm to conduct a search for a given query (encoded signal of
interest) on a set of signals (encoded features of searched items) to produce
the top candidates with similar features. We successfully demonstrate that the
algorithm retrieves signals with similar appearance, given only the original
radio spectrogram data. This algorithm can be used to improve the efficiency of
vetting signals of interest in technosignature searches, but could also be
applied to a wider variety of searches for "lookalike" signals in large
astronomical datasets.
Related papers
- RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
This paper addresses the critical problem of interference rejection in radio-frequency (RF) signals using a novel, data-driven approach.
First, we present an insightful signal model that serves as a foundation for developing and analyzing interference rejection algorithms.
Second, we introduce the RF Challenge, a publicly available dataset featuring diverse RF signals along with code templates.
Third, we propose novel AI-based rejection algorithms, specifically architectures like UNet and WaveNet, and evaluate their performance across eight different signal mixture types.
arXiv Detail & Related papers (2024-09-13T13:53:41Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Large Scale Radio Frequency Wideband Signal Detection & Recognition [0.0]
We introduce the WidebandSig53 dataset which consists of 550 thousand synthetically-generated samples from 53 different signal classes.
We extend the TorchSig signal processing machine learning toolkit for open-source and customizable generation, augmentation, and processing of the WBSig53 dataset.
arXiv Detail & Related papers (2022-11-04T13:24:53Z) - MLGWSC-1: The first Machine Learning Gravitational-Wave Search Mock Data
Challenge [110.7678032481059]
We present the results of the first Machine Learning Gravitational-Wave Search Mock Data Challenge (MLGWSC-1).
For this challenge, participating groups had to identify gravitational-wave signals from binary black hole mergers of increasing complexity and duration embedded in progressively more realistic noise.
Our results show that current machine learning search algorithms may already be sensitive enough in limited parameter regions to be useful for some production settings.
arXiv Detail & Related papers (2022-09-22T16:44:59Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - From One to Many: A Deep Learning Coincident Gravitational-Wave Search [58.720142291102135]
We construct a two-detector search for gravitational waves from binary black hole mergers using neural networks trained on non-spinning binary black hole data from a single detector.
We find that none of these simple two-detector networks are capable of improving the sensitivity over applying networks individually to the data from the detectors.
arXiv Detail & Related papers (2021-08-24T13:25:02Z) - A Machine-Learning-Based Direction-of-Origin Filter for the
Identification of Radio Frequency Interference in the Search for
Technosignatures [0.0]
Convolutional neural networks (CNNs) offer a promising complement to existing filters.
We designed and trained a CNN that can determine whether or not a signal detected in one scan is also present in another scan.
This CNN-based DoO filter outperforms both a baseline 2D correlation model as well as existing DoO filters over a range of metrics.
arXiv Detail & Related papers (2021-07-28T20:22:39Z) - Training Strategies for Deep Learning Gravitational-Wave Searches [43.55994393060723]
We restrict our analysis to signals from non-spinning binary black holes.
We systematically test different strategies by which training data is presented to the networks.
We find that the deep learning algorithms can generalize low signal-to-noise ratio (SNR) signals to high SNR ones but not vice versa.
arXiv Detail & Related papers (2021-06-07T16:04:29Z) - Detection of gravitational-wave signals from binary neutron star mergers
using machine learning [52.77024349608834]
We introduce a novel neural-network based machine learning algorithm that uses time series strain data from gravitational-wave detectors.
We find an improvement by a factor of 6 in sensitivity to signals with signal-to-noise ratio below 25.
A conservative estimate indicates that our algorithm introduces on average 10.2 s of latency between signal arrival and generating an alert.
arXiv Detail & Related papers (2020-06-02T10:20:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.