Towards Robust Object Detection: Bayesian RetinaNet for Homoscedastic
Aleatoric Uncertainty Modeling
- URL: http://arxiv.org/abs/2108.00784v1
- Date: Mon, 2 Aug 2021 11:03:39 GMT
- Title: Towards Robust Object Detection: Bayesian RetinaNet for Homoscedastic
Aleatoric Uncertainty Modeling
- Authors: Natalia Khanzhina, Alexey Lapenok, Andrey Filchenkov
- Abstract summary: COCO dataset is known for its high level of noise in data labels.
We present a series of novel loss functions to address the problem of image object detection at scale.
- Score: 1.6500749121196985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: According to recent studies, commonly used computer vision datasets contain
about 4% of label errors. For example, the COCO dataset is known for its high
level of noise in data labels, which limits its use for training robust neural
deep architectures in a real-world scenario. To model such a noise, in this
paper we have proposed the homoscedastic aleatoric uncertainty estimation, and
present a series of novel loss functions to address the problem of image object
detection at scale. Specifically, the proposed functions are based on Bayesian
inference and we have incorporated them into the common community-adopted
object detection deep learning architecture RetinaNet. We have also shown that
modeling of homoscedastic aleatoric uncertainty using our novel functions
allows to increase the model interpretability and to improve the object
detection performance being evaluated on the COCO dataset.
Related papers
- On the Inherent Robustness of One-Stage Object Detection against Out-of-Distribution Data [6.7236795813629]
We propose a novel detection algorithm for detecting unknown objects in image data.
It exploits supervised dimensionality reduction techniques to mitigate the effects of the curse of dimensionality on the features extracted by the model.
It utilizes high-resolution feature maps to identify potential unknown objects in an unsupervised fashion.
arXiv Detail & Related papers (2024-11-07T10:15:25Z) - Bayesian Detector Combination for Object Detection with Crowdsourced Annotations [49.43709660948812]
Acquiring fine-grained object detection annotations in unconstrained images is time-consuming, expensive, and prone to noise.
We propose a novel Bayesian Detector Combination (BDC) framework to more effectively train object detectors with noisy crowdsourced annotations.
BDC is model-agnostic, requires no prior knowledge of the annotators' skill level, and seamlessly integrates with existing object detection models.
arXiv Detail & Related papers (2024-07-10T18:00:54Z) - Uncertainty modeling for fine-tuned implicit functions [10.902709236602536]
Implicit functions have become pivotal in computer vision for reconstructing detailed object shapes from sparse views.
We introduce Dropsembles, a novel method for uncertainty estimation in tuned implicit functions.
Our results show that Dropsembles achieve the accuracy and calibration levels of deep ensembles but with significantly less computational cost.
arXiv Detail & Related papers (2024-06-17T20:46:18Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANdom RAy Consensus (RANRAC) is an efficient approach to eliminate the effect of inconsistent data.
We formulate a fuzzy adaption of the RANSAC paradigm, enabling its application to large scale models.
Results indicate significant improvements compared to state-of-the-art robust methods for novel-view synthesis.
arXiv Detail & Related papers (2023-12-15T13:33:09Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Combating noisy labels in object detection datasets [0.0]
We introduce the Confident Learning for Object Detection (CLOD) algorithm for assessing the quality of each label in object detection datasets.
We identify missing, spurious, mislabeled, and mislocated bounding boxes and suggesting corrections.
The proposed method is able to point out nearly 80% of artificially disturbed bounding boxes with a false positive rate below 0.1.
arXiv Detail & Related papers (2022-11-25T10:05:06Z) - Zoom In and Out: A Mixed-scale Triplet Network for Camouflaged Object
Detection [0.0]
We propose a mixed-scale triplet network, bf ZoomNet, which mimics the behavior of humans when observing vague images.
Specifically, our ZoomNet employs the zoom strategy to learn the discriminative mixed-scale semantics by the designed scale integration unit and hierarchical mixed-scale unit.
Our proposed highly task-friendly model consistently surpasses the existing 23 state-of-the-art methods on four public datasets.
arXiv Detail & Related papers (2022-03-05T09:13:52Z) - Contemplating real-world object classification [53.10151901863263]
We reanalyze the ObjectNet dataset recently proposed by Barbu et al. containing objects in daily life situations.
We find that applying deep models to the isolated objects, rather than the entire scene as is done in the original paper, results in around 20-30% performance improvement.
arXiv Detail & Related papers (2021-03-08T23:29:59Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.