論文の概要: The Bias-Variance Tradeoff of Doubly Robust Estimator with Targeted
$L_1$ regularized Neural Networks Predictions
- arxiv url: http://arxiv.org/abs/2108.00990v1
- Date: Mon, 2 Aug 2021 15:41:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-03 15:03:36.505712
- Title: The Bias-Variance Tradeoff of Doubly Robust Estimator with Targeted
$L_1$ regularized Neural Networks Predictions
- Title(参考訳): L_1$正規化ニューラルネットワーク予測による二重ロバスト推定器のバイアス変動トレードオフ
- Authors: Mehdi Rostami, Olli Saarela, Michael Escobar
- Abstract要約: ATEの二重ロバスト(DR)推定は、第1ステップでは治療と結果がモデル化され、第2ステップでは予測がDR推定器に挿入される2ステップで行うことができる。
最初の段階でのモデルの仕様ミスにより、研究者はパラメトリックアルゴリズムの代わりに機械学習アルゴリズムを利用するようになった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Doubly Robust (DR) estimation of ATE can be carried out in 2 steps, where
in the first step, the treatment and outcome are modeled, and in the second
step the predictions are inserted into the DR estimator. The model
misspecification in the first step has led researchers to utilize Machine
Learning algorithms instead of parametric algorithms. However, existence of
strong confounders and/or Instrumental Variables (IVs) can lead the complex ML
algorithms to provide perfect predictions for the treatment model which can
violate the positivity assumption and elevate the variance of DR estimators.
Thus the ML algorithms must be controlled to avoid perfect predictions for the
treatment model while still learn the relationship between the confounders and
the treatment and outcome.
We use two Neural network architectures and investigate how their
hyperparameters should be tuned in the presence of confounders and IVs to
achieve a low bias-variance tradeoff for ATE estimators such as DR estimator.
Through simulation results, we will provide recommendations as to how NNs can
be employed for ATE estimation.
- Abstract(参考訳): ATEの二重ロバスト(DR)推定は、第1ステップでは治療と結果がモデル化され、第2ステップでは予測がDR推定器に挿入される2ステップで行うことができる。
最初の段階でのモデルの誤特定は、研究者がパラメトリックアルゴリズムの代わりに機械学習アルゴリズムを使うきっかけとなった。
しかし、強力な共同設立者やインストゥルメンタル変数(IVs)の存在は、複雑なMLアルゴリズムを導くことで、肯定的な仮定に違反し、DR推定器のばらつきを高めることができる治療モデルに完璧な予測を与えることができる。
したがって、MLアルゴリズムは、共同創設者と治療と結果の関係を学習しながら、治療モデルの完全な予測を避けるために制御されなければならない。
2つのニューラルネットワークアーキテクチャを使用して,そのハイパーパラメータを共同設立者やivsの存在下でチューニングして,dr estimatorなどのate推定者に対するバイアス分散トレードオフを低く抑える方法を検討する。
シミュレーションの結果から,NN を ATE 推定に利用する方法についての提言を行う。
関連論文リスト
- Multiply Robust Estimator Circumvents Hyperparameter Tuning of Neural
Network Models in Causal Inference [0.0]
乗算ロバスト (MR) 推定器は1つの推定器で全ての第一段階モデルを活用できる。
MR は方程式の幅広いクラスの解であり、処理モデルの一つが $sqrtn$ consistent であれば一貫した値であることを示す。
論文 参考訳(メタデータ) (2023-07-20T02:31:12Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Doubly Robust Collaborative Targeted Learning for Recommendation on Data
Missing Not at Random [6.563595953273317]
推薦システムでは、受信したフィードバックデータが常にランダムではない(MNAR)。
本稿では,エラー計算(EIB)法と二重頑健(DR)法の両方の利点を効果的に捉えるbf DR-TMLEを提案する。
我々はまた、bf DR-TMLE-TLと呼ばれるDR-TMLEのための新しいRCT非協調目標学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-19T06:48:50Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Doubly Robust Estimation with Machine Learning Predictions [0.0]
本稿では,いくつかのシナリオにおいて有効なAIPW(nAIPW)の正規化を提案する。
シミュレーションの結果,AIPWは正規化を使わなければ広範囲に悩まされることが示唆された。
論文 参考訳(メタデータ) (2021-08-03T22:01:55Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - Enhanced Doubly Robust Learning for Debiasing Post-click Conversion Rate
Estimation [29.27760413892272]
クリック後の変換は、ユーザの好みを示す強いシグナルであり、レコメンデーションシステムを構築する上で有益である。
現在、ほとんどの既存の手法は、対実学習を利用してレコメンデーションシステムを破壊している。
本稿では,MRDR推定のための新しい二重学習手法を提案し,誤差計算を一般的なCVR推定に変換する。
論文 参考訳(メタデータ) (2021-05-28T06:59:49Z) - A comparison of Monte Carlo dropout and bootstrap aggregation on the
performance and uncertainty estimation in radiation therapy dose prediction
with deep learning neural networks [0.46180371154032895]
本稿では,モンテカルロ投棄法(MCDO)とブートストラップアグリゲーション(バッグング)をディープラーニングモデルに応用し,放射線治療用線量予測の不確かさを推定する手法を提案する。
パフォーマンス面では、バギングは調査対象のほとんどの指標において統計的に顕著な損失値と誤差を減少させる。
論文 参考訳(メタデータ) (2020-11-01T00:24:43Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。